Advertisement

Antifibrotic effects of pirfenidone on Tenon’s fibroblasts in glaucomatous eyes: comparison with mitomycin C and 5-fluorouracil

  • Jung Hwa Na
  • Kyung Rim Sung
  • Jin A. Shin
  • Jung Il MoonEmail author
Glaucoma

Abstract

Purpose

The purpose of this study was to evaluate the antifibrotic effects of pirfenidone (PFD) on primary cultured human Tenon’s fibroblasts (HTFs) from primary open-angle glaucoma (POAG) eyes, compared to mitomicin C (MMC) and 5-fluorouracil (5-FU).

Materials and methods

Samples of human Tenon’s capsule were obtained during respective surgeries from three groups of patients: patients with cataract (CAT group), patients with POAG who underwent glaucoma filtration surgery (GFS) (POAG1 group), and patients with POAG who underwent GFS due to failed bleb of previous GFS (POAG2 group). Cell toxicity, cell migration, and the expression level of α-smooth muscle actin (α-SMA) protein were evaluated in primary cultured HTFs from the three patient groups after treatment (PFD, MMC, or 5-FU).

Results

Overall, cell viability after PFD treatment was higher compared to MMC treatment (82.3 ± 5.1 % vs 56.7 ± 3.8 %; p = 0.001) and comparable to 5-FU treatment (82.3 ± 5.1 % vs 85.7 ± 10.7 %, p = 0.214) at the same concentration (0.4 mg/ml). Both 0.3 mg/ml PFD and 0.1 mg/ml MMC inhibited cell migration compared to control (without treatment) cells (p = 0.014 and 0.005, respectively), while 0.2 mg/ml 5-FU showed the highest degree of cell migration among the three agents in the POAG1 group (PFD vs MMC vs 5-FU; 29.5 ± 2.1 % vs 34.5 ± 0.7 % vs 76.0 ± 8.5 %, PFD vs MMC; p = 1.000, PFD vs 5-FU; p = 0.008, MMC vs 5-FU; p = 0.011). PFD (0.1 or 0.3 mg/ml) and MMC (0.05 and 0.1 mg/ml) treatment significantly reduced the protein expression level of α-SMA in the POAG 1 group (all p < 0.05), and the α-SMA protein level following treatment with 0.3 mg/ml PFD was lower than that of 0.1 mg/ml MMC (p = 0.040).

Conclusion

PFD showed less cytotoxicity compared to MMC. PFD and MMC inhibited cell migration and reduced α-SMA protein expression levels, while 5-FU showed neither inhibition of cell migration nor reduction in α-SMA expression level. These findings indicate PFD as a potential adjunctive antifibrotic agent to prevent bleb failure during GFS.

Keywords

Antimetabolites Fibroblasts Glaucoma filtration surgery Pirfenidone 

Notes

Conflict of interest

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) in the subject matter or materials discussed in this manuscript.

References

  1. 1.
    Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. doi: 10.1136/bjo.2005.081224 PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279CrossRefPubMedGoogle Scholar
  3. 3.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713, discussion 829–730CrossRefPubMedGoogle Scholar
  4. 4.
    Lee DA (1994) Antifibrosis agents and glaucoma surgery. Invest Ophthalmol Vis Sci 35:3789–3791PubMedGoogle Scholar
  5. 5.
    Addicks EM, Quigley HA, Green WR, Robin AL (1983) Histologic characteristics of filtering blebs in glaucomatous eyes. Arch Ophthalmol 101:795–798CrossRefPubMedGoogle Scholar
  6. 6.
    Jampel HD, McGuigan LJ, Dunkelberger GR, L'Hernault NL, Quigley HA (1988) Cellular proliferation after experimental glaucoma filtration surgery. Arch Ophthalmol 106:89–94CrossRefPubMedGoogle Scholar
  7. 7.
    Colotto A, Falsini B, Cesari L, Cermola S, Iarossi G, Salgarello T, Scullica L (1997) Antimetabolites in glaucoma surgery: our experiences and results. Acta Ophthalmol Scand Suppl 224:58–59PubMedGoogle Scholar
  8. 8.
    Ren J, Shin DH, O'Grady JM, Kim YY, Juzych MS, Hughes BA, Kim C, Glover BK (1998) Long-term outcome of primary glaucoma triple procedure with adjunctive 5-fluorouracil. Graefes Arch Clin Exp Ophthalmol 236:501–506CrossRefPubMedGoogle Scholar
  9. 9.
    Landers J, Martin K, Sarkies N, Bourne R, Watson P (2012) A twenty-year follow-up study of trabeculectomy: risk factors and outcomes. Ophthalmology 119:694–702. doi: 10.1016/j.ophtha.2011.09.043 CrossRefPubMedGoogle Scholar
  10. 10.
    Manche EE, Afshari MA, Singh K (1998) Delayed corneal epitheliopathy after antimetabolite-augmented trabeculectomy. J Glaucoma 7:237–239CrossRefPubMedGoogle Scholar
  11. 11.
    Belyea DA, Dan JA, Stamper RL, Lieberman MF, Spencer WH (1997) Late onset of sequential multifocal bleb leaks after glaucoma filtration surgery with 5-fluorouracil and mitomycin C. Am J Ophthalmol 124:40–45CrossRefPubMedGoogle Scholar
  12. 12.
    Jampel HD, Pasquale LR, Dibernardo C (1992) Hypotony maculopathy following trabeculectomy with mitomycin C. Arch Ophthalmol 110:1049–1050CrossRefPubMedGoogle Scholar
  13. 13.
    Stamper RL, McMenemy MG, Lieberman MF (1992) Hypotonous maculopathy after trabeculectomy with subconjunctival 5-fluorouracil. Am J Ophthalmol 114:544–553CrossRefPubMedGoogle Scholar
  14. 14.
    Suzuki R, Nakayama M, Satoh N (1999) Three types of retinal bleeding as a complication of hypotony after trabeculectomy. Ophthalmologica 213:135–138CrossRefPubMedGoogle Scholar
  15. 15.
    Schraermeyer U, Diestelhorst M, Bieker A, Theisohn M, Mietz H, Ustundag C, Joseph G, Krieglstein GK (1999) Morphologic proof of the toxicity of mitomycin C on the ciliary body in relation to different application methods. Graefes Arch Clin Exp Ophthalmol 237:593–600CrossRefPubMedGoogle Scholar
  16. 16.
    Akova YA, Bulut S, Dabil H, Duman S (1999) Late bleb-related endophthalmitis after trabeculectomy with mitomycin C. Ophthalmic Surg Lasers 30:146–151PubMedGoogle Scholar
  17. 17.
    Franks WA, Hitchings RA (1991) Complications of 5--fluorouracil after trabeculectomy. Eye (Lond) 5(Pt 4):385–389. doi: 10.1038/eye.1991.63 CrossRefGoogle Scholar
  18. 18.
    Schaefer CJ, Ruhrmund DW, Pan L, Seiwert SD, Kossen K (2011) Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev 20:85–97. doi: 10.1183/09059180.00001111 CrossRefPubMedGoogle Scholar
  19. 19.
    Richeldi L (2012) Assessing the treatment effect from multiple trials in idiopathic pulmonary fibrosis. Eur Respir Rev 21:147–151. doi: 10.1183/09059180.00000912 CrossRefPubMedGoogle Scholar
  20. 20.
    Xaubet A, Serrano-Mollar A, Ancochea J (2014) Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Opin Pharmacother 15:275–281. doi: 10.1517/14656566.2014.867328 CrossRefPubMedGoogle Scholar
  21. 21.
    Potts J, Yogaratnam D (2013) Pirfenidone: a novel agent for the treatment of idiopathic pulmonary fibrosis. Ann Pharmacother 47:361–367. doi: 10.1345/aph.1R337 CrossRefPubMedGoogle Scholar
  22. 22.
    Giri SN, Leonard S, Shi X, Margolin SB, Vallyathan V (1999) Effects of pirfenidone on the generation of reactive oxygen species in vitro. J Environ Pathol Toxicol Oncol 18:169–177PubMedGoogle Scholar
  23. 23.
    Lin X, Yu M, Wu K, Yuan H, Zhong H (2009) Effects of pirfenidone on proliferation, migration, and collagen contraction of human Tenon's fibroblasts in vitro. Invest Ophthalmol Vis Sci 50:3763–3770. doi: 10.1167/iovs.08-2815 CrossRefPubMedGoogle Scholar
  24. 24.
    Lee K, Young Lee S, Park SY, Yang H (2014) Antifibrotic effect of pirfenidone on human pterygium fibroblasts. Curr Eye Res 39:680–685. doi: 10.3109/02713683.2013.867063 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhong H, Sun G, Lin X, Wu K, Yu M (2011) Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci 52:3136–3142. doi: 10.1167/iovs.10-6240 CrossRefPubMedGoogle Scholar
  26. 26.
    Skuta GL, Parrish RK 2nd (1987) Wound healing in glaucoma filtering surgery. Surv Ophthalmol 32:149–170CrossRefPubMedGoogle Scholar
  27. 27.
    Esson DW, Neelakantan A, Iyer SA, Blalock TD, Balasubramanian L, Grotendorst GR, Schultz GS, Sherwood MB (2004) Expression of connective tissue growth factor after glaucoma filtration surgery in a rabbit model. Invest Ophthalmol Vis Sci 45:485–491CrossRefPubMedGoogle Scholar
  28. 28.
    Andreev K, Zenkel M, Kruse F, Junemann A, Schlotzer-Schrehardt U (2006) Expression of bone morphogenetic proteins (BMPs), their receptors, and activins in normal and scarred conjunctiva: role of BMP-6 and activin-A in conjunctival scarring? Exp Eye Res 83:1162–1170. doi: 10.1016/j.exer.2006.06.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Kolb M, Xing Z, Gauldie J (2002) Growth factors. In: Barnes P, Drazen J, Rennard S, Thomson N (eds) Asthma and COPD. Academic Press, London, pp 283–289CrossRefGoogle Scholar
  30. 30.
    Varga J, Rosenbloom J, Jimenez SA (1987) Transforming growth factor beta (TGF beta) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 247:597–604PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Overall CM, Wrana JL, Sodek J (1989) Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264:1860–1869PubMedGoogle Scholar
  32. 32.
    Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang IH, Clark AF (2006) TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci 47:226–234. doi: 10.1167/iovs.05-1060 CrossRefPubMedGoogle Scholar
  33. 33.
    Kuchtey J, Kunkel J, Burgess LG, Parks MB, Brantley MA Jr, Kuchtey RW (2014) Elevated transforming growth factor beta1 in plasma of primary open-angle glaucoma patients. Invest Ophthalmol Vis Sci 55:5291–5297. doi: 10.1167/iovs.14-14578 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Prendes MA, Harris A, Wirostko BM, Gerber AL, Siesky B (2013) The role of transforming growth factor beta in glaucoma and the therapeutic implications. Br J Ophthalmol 97:680–686. doi: 10.1136/bjophthalmol-2011-301132 CrossRefPubMedGoogle Scholar
  35. 35.
    McDonnell F, O'Brien C, Wallace D (2014) The role of epigenetics in the fibrotic processes associated with glaucoma. J Ophthalmol 2014:750459. doi: 10.1155/2014/750459 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Lama PJ, Fechtner RD (2003) Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol 48:314–346CrossRefPubMedGoogle Scholar
  37. 37.
    Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C (2014) Effect of pirfenidone on proliferation, TGF-beta-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci 58:13–19. doi: 10.1016/j.ejps.2014.02.014 CrossRefPubMedGoogle Scholar
  38. 38.
    Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Engel LA, Muether PS, Fauser S, Hueber A (2014) The effect of previous surgery and topical eye drops for primary open-angle glaucoma on cytokine expression in aqueous humor. Graefes Arch Clin Exp Ophthalmol 252:791–799. doi: 10.1007/s00417-2607-5 CrossRefPubMedGoogle Scholar
  40. 40.
    Shi Q, Liu X, Bai Y, Cui C, Li J, Li Y, Hu S, Wei Y (2011) In vitro effects of pirfenidone on cardiac fibroblasts: proliferation, myofibroblast differentiation, migration and cytokine secretion. PLoS One 6, e28134. doi: 10.1371/journal.pone.0028134 PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Singh K, Egbert PR, Byrd S, Budenz DL, Williams AS, Decker JH, Dadzie P (1997) Trabeculectomy with intraoperative 5-fluorouracil vs mitomycin C. Am J Ophthalmol 123:48–53CrossRefPubMedGoogle Scholar
  42. 42.
    Singh K, Mehta K, Shaikh NM, Tsai JC, Moster MR, Budenz DL, Greenfield DS, Chen PP, Cohen JS, Baerveldt GS, Shaikh S (2000) Trabeculectomy with intraoperative mitomycin C versus 5-fluorouracil. Prospective randomized clinical trial. Ophthalmology 107:2305–2309CrossRefPubMedGoogle Scholar
  43. 43.
    Palanca-Capistrano AM, Hall J, Cantor LB, Morgan L, Hoop J, WuDunn D (2009) Long-term outcomes of intraoperative 5-fluorouracil versus intraoperative mitomycin C in primary trabeculectomy surgery. Ophthalmology 116:185–190. doi: 10.1016/j.ophtha.2008.08.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jung Hwa Na
    • 1
  • Kyung Rim Sung
    • 2
  • Jin A. Shin
    • 2
  • Jung Il Moon
    • 3
    Email author
  1. 1.St. Mary’s Eye CenterSeoulKorea
  2. 2.Department of Ophthalmology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
  3. 3.Department of Ophthalmology and Visual Science, Yeouido St. Mary’s HospitalThe Catholic University of Korea College of MedicineSeoulKorea

Personalised recommendations