Marked dissociation of photopic and mesopic contrast sensitivity even in normal observers

  • Hannah Hertenstein
  • Michael Bach
  • Nikolai Johannes Gross
  • Flemming Beisse
Neurophthalmology

Abstract

Aim

Although contrast vision is not routinely tested, it is important: for instance, it predicts traffic incidents better than visual acuity. Mesopic contrast sensitivity (CS) testing approximates low-lighting conditions but entails dark adaptation, which can disrupt clinical routine. In receptor-specific diseases, a dissociation of photopic and mesopic sensitivity would be expected, but can photopic CS act as a surrogate measure for mesopic CS, at least for screening purposes?

Methods

Photopic and mesopic contrast sensitivities were studied in three groups: 47 normal subjects, 23 subjects with glaucoma, and three subjects with cataract. Twenty-eight of the normal subjects were additionally tested with artificial blur. Photopic contrast sensitivity was assessed with both the Freiburg Acuity and Contrast Test (FrACT) and the Mars Letter Contrast Sensitivity Charts. Mesopic contrast sensitivity, without and with glare, was measured with the Mesoptometer IIb. Coefficients of repeatability and limits of agreement were calculated for all tests.

Results

Test–retest limits of agreement were ± 0.17 logCS for Mars, ± 0.21 logCS for FrACT, and ±0.20 logCS / ± 0.14 logCS for Mesoptometer IIb without and with glare, respectively. In terms of inter-test comparison, Mars and FrACT largely agreed, except for ceiling effects in the Mars test. While mesopic and photopic contrast sensitivities correlate significantly (r  = 0.51, p < 0.01), only 27 % of the variance is in common. In particular, subjects with high photopic results may be nearly as likely to have low as well as high mesopic results.

Conclusions

The photopic contrast sensitivity tests assessed here cannot serve as surrogate measures for current mesopic contrast sensitivity tests. Low photopic CS predicts low mesopic CS, but with normal photopic CS, mesopic CS can be normal or pathologic.

Keywords

Contrast sensitivity Mesopic vision Photopic vision Rods Cones Age Traffic 

References

  1. 1.
    Wood JM, Owens DA (2005) Standard measures of visual acuity do not predict drivers’ recognition performance under day or night conditions. Optom Vis Sci 82:698–705PubMedCrossRefGoogle Scholar
  2. 2.
    Owsley C, Stalvey BT, Wells J et al (2001) Visual risk factors for crash involvement in older drivers with cataract. Arch Ophthalmol 119:881–887PubMedCrossRefGoogle Scholar
  3. 3.
    Bundesministerium der Justiz (2010) Fahrerlaubnisverordnung, Anlage 6. http://www.gesetze-im-internet.de/fev_2010/anlage_6.html. Accessed 6 Apr 2015
  4. 4.
    Rubin GS, Bandeen-Roche K, Huang G-H et al (2001) The Association of Multiple Visual Impairments with Self-Reported Visual Disability: SEE Project. IOVS 42:64–72Google Scholar
  5. 5.
    Bach M, Lachenmayr B, Schiefer U (2011) Prüfung des Kontrast- oder Dämmerungssehens. Ophthalmologe 108:1195–1198. doi:10.1007/s00347-011-2488-5 CrossRefGoogle Scholar
  6. 6.
    Aulhorn E, Harms H (1970) Über die Untersuchung der Nachtfahreignung von Kraftfahrern mit dem Mesoptometer. Klin Monatsbl Augenheilk 157:843–873Google Scholar
  7. 7.
    DOG-Verkehrskommission (2012) Stellungnahme der DOG-Verkehrskommission zur Prüfung des Dämmerungssehens bei der Fahreignungsbegutachtung. http://www.dog.org/wp-content/uploads/2009/08/DOG-Stellungn-Dämmerungssehen-2013-Webseite.pdf. Accessed 6 Apr 2015
  8. 8.
    Arditi A (2005) Improving the design of the letter contrast sensitivity test. Invest Ophthalmol Vis Sci 46:2225–2229. doi:10.1167/iovs.04-1198 PubMedCrossRefGoogle Scholar
  9. 9.
    Bach M (1996) The Freiburg Visual Acuity Test — automatic measurement of visual acuity. Optom Vis Sci 73:49–53PubMedCrossRefGoogle Scholar
  10. 10.
    Neargarder SA, Stone ER, Cronin-Golomb A, Oross S (2003) The impact of acuity on performance of four clinical measures of contrast sensitivity in Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 58:P54–P62PubMedCrossRefGoogle Scholar
  11. 11.
    Bühren J, Terzi E, Bach M et al (2006) Measuring contrast sensitivity under different lighting conditions: comparison of three tests. Optom Vis Sci 83:290–298PubMedCrossRefGoogle Scholar
  12. 12.
    Bach M (2007) The Freiburg Visual Acuity Test — variability unchanged by post-hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245:965–971PubMedCrossRefGoogle Scholar
  13. 13.
    Bach M (2009) Homepage of the Freiburg Visual Acuity & Contrast Test (“FrACT”). http://michaelbach.de/fract.html. Accessed 6 Apr 2015
  14. 14.
    Bach M (1997) Anti-aliasing and dithering in the Freiburg Visual Acuity Test. Spat Vis 11:85–89PubMedCrossRefGoogle Scholar
  15. 15.
    Lieberman HR, Pentland AP (1982) Microcomputer-based estimation of psychophysical thresholds: The best PEST. Behav Res Methods Instrum 14:21–25CrossRefGoogle Scholar
  16. 16.
    Dougherty BE, Flom RE, Bullimore MA (2005) An evaluation of the Mars Letter Contrast Sensitivity Test. Optom Vis Sci 82:970–975PubMedCrossRefGoogle Scholar
  17. 17.
    R Development Core Team (2014) R: A Language and Environment for Statistical Computing. http://www.R-project.org/. Accessed 18 Aug 2014
  18. 18.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. doi:10.1177/096228029900800204 PubMedCrossRefGoogle Scholar
  19. 19.
    Haymes SA, Roberts KF, Cruess AF et al (2006) The Letter Contrast Sensitivity Test: clinical evaluation of a new design. IOVS 47:2739–2745. doi:10.1167/iovs.05-1419 Google Scholar
  20. 20.
    Heinrich SP, Krüger K, Bach M (2011) The dynamics of practice effects in an optotype acuity task. Graefes Arch Clin Exp Ophthalmol 249:1319–1326. doi:10.1007/s00417-011-1675-z PubMedCrossRefGoogle Scholar
  21. 21.
    Otto J, Michelson G (2014) Repetitive tests of visual function improved visual acuity in young subjects. Br J Ophthalmol 98:383–386. doi:10.1136/bjophthalmol-2013-304262 PubMedCrossRefGoogle Scholar
  22. 22.
    van Rijn LJ, Nischler C, Gamer D et al (2005) Measurement of stray light and glare: comparison of Nyktotest, Mesotest, stray light meter, and computer implemented stray light meter. Br J Ophthalmol 89:345–351. doi:10.1136/bjo.2004.044990 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40. doi:10.1186/1750-1172-1-40 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bedell HE (1987) Eccentric regard, task and optical blur as factors influencing visual acuity a low luminances. Night Vision Current Research and Future Directions. Symposium Proceedings. National Academy Press, Washington, pp 146–161Google Scholar
  25. 25.
    Owens DA (1987) Normal variations of visual accommodation and binocular vergence: some implications for night vision. Night Vision Current Research and Future Directions. Symposium Proceedings. National Academy Press, Washington, pp 85–106Google Scholar
  26. 26.
    Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203:237–260PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Holopigian K, Bach M (2010) A primer on common statistical errors in clinical ophthalmology. Doc Ophthalmol 121:215–222. doi:10.1007/s10633-010-9249-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Kinney JAS (1968) Clinical measurement of night vision. The Measurement of Visual Function. Proceedings of Spring Symposium, 1965. National Academy Press, Washington, pp 139–152Google Scholar
  29. 29.
    Cumming G, Finch S (2005) Inference by eye: confidence intervals and how to read pictures of data. Am Psychol 60:170–180. doi:10.1037/0003-066X.60.2.170 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Eye CenterUniversity of FreiburgFreiburgGermany
  2. 2.Ophthalmology DepartmentUniversity of HeidelbergHeidelbergGermany

Personalised recommendations