Three-year corneal graft survival rate in high-risk cases treated with subconjunctival and topical bevacizumab

  • Iva Dekaris
  • Nikica Gabrić
  • Nataša Drača
  • Maja Pauk-Gulić
  • Neven Miličić



To evaluate the effect of combined subconjunctival and topical bevacizumab treatment on corneal graft survival rate in high-risk eyes.


Prospective, consecutive, interventional case series. Fifty eyes of 50 high-risk patients scheduled for penetrating keratoplasty (PK) were included in the study; two Stevens–Johnson syndromes (SJS), five corneal combustions due to chemical burn, seven post-traumatic vascularised leucomas, 11 post-infectious vascularised leucomas, 19 rejected grafts and six corneal ulcers. Additional surgeries such as autologous limbal stem cell and/or amniotic membrane transplantation were performed together with PK in ten cases. All eyes received subconjunctival injection of 0.5 ml bevacizumab (25 mg/ml) after PK. Eyes with more than two quadrants of neovascularisation (NV) received bevacizumab drops (25 mg/ml) postoperatively for up to 12 weeks. Donor grafts were followed up for best-corrected visual acuity, graft clarity, change in NV, endothelial cell density loss (ECD), and adverse events. Mean follow-up was 36.5 months (range 32–61).


Best-corrected visual acuity increase was statistically significant in 82 % (41/50) of eyes 3 years after PK (paired t-test, p = 0.02). Thirty-five (70 %) high-risk grafts remained clear throughout the 3-year follow-up period. Decrease of corneal NV was observed in 84 % (42/50) of eyes treated with bevacizumab. ECD changed from preoperative 2,864 ± 301 down to 1,905 ± 187 cells/mm2 at 3 postoperative years. A non-healing epithelial defect was recorded in one patient with SJS after 12 weeks of topical bevacizumab.


Combined subconjunctival and topical bevacizumab treatment may improve corneal graft survival rate in the majority of high-risk cases.


High-risk cases Penetrating keratoplasty Bevacizumab Anti-VEGF 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rocha G, Deschenes J, Rowsey JJ (1998) The immunology of corneal graft rejection. Crit Rev Immunol 18:305–325PubMedCrossRefGoogle Scholar
  2. 2.
    The Collaborative Corneal Transplantation Studies (CCTS) (1992) Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol 110:1392–1403CrossRefGoogle Scholar
  3. 3.
    Dana MR (2006) Angiogenesis and lymphangiogenesis—implications for corneal immunity. Semin Ophthalmol 21:19–22PubMedCrossRefGoogle Scholar
  4. 4.
    Bachmann BO, Bock F, Wiegand SJ, Maruyama K, Dana MR, Kruse FE, Luetjen-Drecoll E, Cursiefen C (2008) Promotion of graft survival by vascular endothelial growth factor neutralization after high-risk corneal transplantation. Arch Ophthalmol 126:71–77PubMedCrossRefGoogle Scholar
  5. 5.
    Bhatti N, Qidwai U, Hussain M, Kazi A (2013) Efficacy of topical bevacizumab in high-risk corneal transplant survival. Pak J Med Sci 29:519–522PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bhatti N, Qidwai U, Hussain M, Kazi A (2013) Efficacy of sub-conjunctival and topical bevacizumab in high-risk corneal transplant survival. J Pak Med Assoc 63:1256–1259PubMedGoogle Scholar
  7. 7.
    Vassileva PI, Hergeldzhieva TG (2009) Avastin use in high risk corneal transplantation. Graefes Arch Clin Exp Ophthalmol 247:1701–1706PubMedCrossRefGoogle Scholar
  8. 8.
    Azar DT (2006) Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:264–302PubMedCentralPubMedGoogle Scholar
  9. 9.
    Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249PubMedCrossRefGoogle Scholar
  10. 10.
    Cursiefen C, Wenkel H, Martus P, Langenbucher A, Nguyen NX, Seitz B, Küchle M, Naumann GO (2001) Impact of short-term versus long-term topical steroids on corneal neovascularization after non-high-risk keratoplasty. Graefes Arch Clin Exp Ophthalmol 239:514–521PubMedCrossRefGoogle Scholar
  11. 11.
    Shimmura-Tomita M, Shimmura S, Satake Y, Shimazaki-Den S, Omoto M, Tsubota K, Shimazaki J (2013) Keratoplasty postoperative treatment update. Cornea 32(1):S60–64PubMedCrossRefGoogle Scholar
  12. 12.
    Bohringer D, Reinhard T (2008) Prognosis in repeat keratoplasty: per indication analysis in a large monocentric cohort. Klin Monatsbl Augenheilkd 225(1):50–56PubMedCrossRefGoogle Scholar
  13. 13.
    Bäumler M, Sundmacher L, Reinhard T, Böhringer D (2014) Cost-effectiveness of human leukocyte antigen matching in penetrating keratoplasty. Int J Technol Assess Health Care 5:1–9Google Scholar
  14. 14.
    Tabbara KF (2008) Pharmacologic strategies in the prevention and treatment of corneal transplant rejection. Int Ophthalmol 28(3):223–232PubMedCrossRefGoogle Scholar
  15. 15.
    Chatel MA, Larkin DF (2010) Sirolimus and mycophenolate as combination prophylaxis in corneal transplant recipients at high rejection risk. Am J Ophthalmol 150(2):179–184PubMedCrossRefGoogle Scholar
  16. 16.
    Magalhaes OA, Marinho DR, Kwitko S (2013) Topical 0.03 % tacrolimus preventing rejection in high-risk corneal transplantation: a cohort study. Br J Ophthalmol 97(11):1395–1398PubMedCrossRefGoogle Scholar
  17. 17.
    Shi W, Chen M, Xie L, Liu M, Gao H, Wang T, Wu X, Zhao J (2013) A novel cyclosporine A drug-delivery system for prevention of human corneal rejection after high-risk keratoplasty: a clinical study. Ophthalmology 120(4):695–702PubMedCrossRefGoogle Scholar
  18. 18.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  19. 19.
    Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP (1998) Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 39:18–22PubMedGoogle Scholar
  20. 20.
    Stevenson W, Cheng S, Dastjerdi M, Ferrari G, Dana R (2012) Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 10:67–83PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Avery RL, Pearlman J, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ, Wendel R, Patel A (2006) Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 113(10):1695PubMedCrossRefGoogle Scholar
  22. 22.
    Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ (2006) Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113:363–372PubMedCrossRefGoogle Scholar
  23. 23.
    Bock F, König Y, Dietrich T, Zimmermann P, Baier M, Cursiefen C (2007) Inhibition of angiogenesis in the anterior chamber of the eye. Ophtalmologe 104:336–344CrossRefGoogle Scholar
  24. 24.
    Fasciani R, Mosca L, Giannico MI, Ambrogio SA, Balestrazzi E (2014). Subconjunctival and/or intrastromal bevacizumab injections as preconditioning therapy to promote corneal graft survival. Int Ophthalmol Apr 9 [Epub ahead of print]Google Scholar
  25. 25.
    Altenburger AE, Bachmann B, Seitz B, Cursiefen C (2012) Morphometric analysis of postoperative corneal neovascularization after high-risk keratoplasty: herpetic versus non-herpetic disease. Graefes Arch Clin Exp Ophthalmol 250(11):1663–1671PubMedCrossRefGoogle Scholar
  26. 26.
    Waldock A, Cook SD (2000) Corneal transplantation: how successful are we? Br J Ophthalmol 84(8):813–815PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hernández-Da Mota SE, Paniagua Jacobo M, Gómez Revuelta G, Páez Martínez RM (2013) Corneal transplant in a second level hospital. A survival analysis. Gac Med Mex 149(4):425–430PubMedGoogle Scholar
  28. 28.
    Sekelj S, Dekaris I, Balog T, Mahovne I, Krstonijevic EK, Janjetovic Z, Arar ZV, Aric I (2014) Vascular endothelial growth factor in a recipient cornea acts as a prognostic factor for corneal graft reactiondevelopment. Curr Eye Res 9:1–8CrossRefGoogle Scholar
  29. 29.
    Maier AK, Ozlugedik S, Rottler J, Heussen FM, Klamann MK, Huber KK, Joussen AM, Winterhalter S (2011) Efficacy of postoperative immunosuppression after keratoplasty in herpetic keratitis. Cornea 30(12):1398–405PubMedCrossRefGoogle Scholar
  30. 30.
    Scorcia V, Busin M (2012) Survival of mushroom keratoplasty performed in corneas with postinfectious vascularised scars. Am J Ophthalmol 153(1):44–50PubMedCrossRefGoogle Scholar
  31. 31.
    Chan CC, Biber JM, Holland EJ (2012) The modified Cincinnati procedure: combined conjunctival limbal autografts and keratolimbal allografts for severe unilateral ocular surface failure. Cornea 31(11):1264–1272PubMedCrossRefGoogle Scholar
  32. 32.
    Borderie V, Touzeau O, Bourcier T, Allouch C, Scheer S, Laroche L (2003) Treatment of the sequelae of ocular burns using limbal transplantation. J Fr Ophtalmol 26(7):710–716PubMedGoogle Scholar
  33. 33.
    Yalniz-Akkaya Z, Burcu Nurozler A, Yildiz E, Onat M, Budak K, Duman S (2009) Repeat penetrating keratoplasty: indications and prognosis, 1995–2005. Eur J Ophthalmol 19(3):362–368PubMedGoogle Scholar
  34. 34.
    Cursiefen C, Hofmann-Rummelt C, Küchle M, Schlötzer-Schrehardt U (2003) Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J Ophthalmol 87:101–106PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Koenig Y, Bock F, Horn F, Straub K, Cursiefen C (2009) Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 247:1375–1382PubMedCrossRefGoogle Scholar
  36. 36.
    Cheng SF, Dastjerdi MH, Ferrari G, Okanobo A, Bower KS, Ryan DS, Amparo F, Stevenson W, Hamrah P, Nallasamy N, Dana R (2012) Short-term topical bevacizumab in the treatment of stable corneal neovascularization. Am J Ophthalmol 154:940–948PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kim SW, Ha BJ, Kim EK, Tchah H, Kim TI (2008) The effect of topical bevacizumab on corneal neovascularization. Ophthalmology 115:e33–e38PubMedCrossRefGoogle Scholar
  38. 38.
    Rusovici R, Sakhalkar M, Chalam KV (2011) Evaluation of cytotoxicity of bevacizumab on VEGF-enriched corneal endothelial cells. Mol Vis 17:3339–3346PubMedCentralPubMedGoogle Scholar
  39. 39.
    Lichtinger A, Yeung SN, Kim P, Amiran MD, Elbaz U, Slomovic AR (2014) Corneal endothelial safety following subconjunctivaly and intrastromal injection of bevacizumab for corneal neovascularization. Int Ophthalmol 34(3):597–601PubMedCrossRefGoogle Scholar
  40. 40.
    Moisseiev E, Waisburd M, Ben-Arsti E, Levinger E, Barak A, Daniels T, Csaky K, Loewenstein A, Barequet IS (2014) Pharamacokinetics of bevacizumab after topical and intravitreal administration in human eyes. Graefes Arch Clin Exp Ophthalmol 252(2):331–337PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Iva Dekaris
    • 1
  • Nikica Gabrić
    • 1
  • Nataša Drača
    • 1
  • Maja Pauk-Gulić
    • 1
  • Neven Miličić
    • 1
  1. 1.Special Eye Hospital ‘Svjetlost’, Department of OphthalmologyUniversity of RijekaZagrebCroatia

Personalised recommendations