Advertisement

Ameliorative effects of SkQ1 eye drops on cataractogenesis in senescence-accelerated OXYS rats

  • Yuliya V. RumyantsevaEmail author
  • Elena I. Ryabchikova
  • Anjela Z. Fursova
  • Nataliya G. Kolosova
Basic Science

Abstract

Background

Antioxidant supplements have been suggested as a strategy to decrease the risk of age-related cataract, but there is no evidence that antioxidants can reduce the signs of the disease. Recently, we showed that the mitochondrial antioxidant SkQ1 can partially reverse cataract signs in senescence-accelerated OXYS rats. The aim of the present study was the histomorphological examination of the influence of SkQ1 eye drops on the cataract development in OXYS rats.

Methods

OXYS rats received SkQ1 eye drops (250 nM) from 9 to 12 months of age. Ophthalmoscopic examination was carried out before and after treatment. Light and electron microscopy were used for histomorphological examination. Expression of the Cryaa and Cryab genes was determined using real-time PCR. αB-crystallin expression was detected using Western blotting.

Results

SkQ1 completely prevented the cataract development in OXYS rats, and in some of the animals diminished the signs of the disease. Light and electron microscopy showed that SkQ1 attenuated the (typical for cataract) alterations in the lens capsule and epithelial cells, ameliorated disturbances of the hexagonal packing geometry of lens fibers, and improved ultrastructure of the epithelial cells. The levels of mRNA of α-crystallins genes which encode small heat shock proteins αA- and αB-crystallin that play a central role in maintaining lens transparency were significantly lower in the OXYS rats’ lenses than in Wistar rats (control). SkQ1 normalized the level of mRNA of Cryaa, and significantly increased the level of Cryab mRNA as well as αB-crystallin protein in the lens of OXYS rats to the level of the control Wistar rats.

Conclusion

SkQ1 eye drops hold promise as a treatment of cataract.

Keywords

Cataract Mitochondria-targeted antioxidant SkQ1 Alpha-crystallin OXYS rats 

Notes

Acknowledgments

Microscopy was performed at the Microscopy Center of the Institute of Cytology and Genetics, SB RAS, Russia. This study was supported by the Russian Foundation for Basic Research (Grant # 14-04-00376) and by budgetary project No 53.2.3.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

References

  1. 1.
    Chang JR, Koo E, Agrón E, Hallak J, Clemons T, Azar D, Sperduto RD, Ferris FL 3rd, Chew EY (2011) Age-related Eye Disease Study Group. Risk factors associated with incident cataracts and cataract surgery in the Age-related Eye Disease Study (AREDS): AREDS report number 32. Ophthalmology 118(11):2113–2119PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hooper CY, Lamoureux EL, Lim L, Fraser-Bell S, Yeoh J, Harper CA, Keeffe JE, Guymer RH (2009) Cataract surgery in high-risk age-related macular degeneration: a randomized controlled trial. Clin Exp Ophthalmol 37(6):570–576CrossRefGoogle Scholar
  3. 3.
    Gritz DC, Srinivasan M, Smith SD, Kim U, Lietman TM, Wilkins JH, Priyadharshini B, John RK, Aravind S, Prajna NV, Duraisami Thulasiraj R, Whitcher JP (2006) The antioxidants in prevention of cataracts study: effects of antioxidant supplements on cataract progression in South India. Br J Ophthalmol 90(7):847–851PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mathew MC, Ervin AM, Tao J, Davis RM (2012) Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst Rev 6:CD004567. doi:  10.1002/14651858.CD004567.pub2
  5. 5.
    Chew EY, Sangiovanni JP, Ferris FL, Wong WT, Agron E, Clemons TE, Sperduto R, Danis R, Chandra SR, Blodi BA, Domalpally A, Elman MJ, Antoszyk AN, Ruby AJ, Orth D, Bressler SB, Fish GE, Hubbard GB, Klein ML, Friberg TR, Rosenfeld PJ, Toth CA, Bernstein P (2013) Age-related Eye Disease Study 2 (AREDS2) Research Group. Lutein/zeaxanthin for the treatment of age-related cataract: AREDS2 randomized trial report No. 4. JAMA Ophthalmol 131(7):843–850PubMedCrossRefGoogle Scholar
  6. 6.
    Zheng SJ, Rautiainen S, Lindblad BE, Morgenstern R, Wolk A (2013) High-dose supplements of vitamins C and E, low-dose multivitamins, and the risk of age-related cataract: a population-based prospective cohort study of men. Am J Epidemiol 177(6):548–555CrossRefGoogle Scholar
  7. 7.
    Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12(6):800–826PubMedCrossRefGoogle Scholar
  8. 8.
    Neroev VV, Archipova MM, Bakeeva LE, Fursova AZ, Grigorian EN, Grishanova AY, Iomdina EN, Ivashchenko ZN, Katargina LA, Khoroshilova-Maslova IP, Kilina OV, Kolosova NG, Kopenkin EP, Korshunov SS, Kovaleva NA, Novikova YP, Philippov PP, Pilipenko DI, Robustova OV, Saprunova VB, Senin II, Skulachev MV, Sotnikova LF, Stefanova NA, Tikhomirova NK, Tsapenko IV, Shchipanova AI, Zinovkin RA, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochemistry (Mosc) 73:1317–1328CrossRefGoogle Scholar
  9. 9.
    Markovets AM, Fursova AZ, Kolosova NG (2011) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression. PLoS One 6:e21682PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Andley UP (2009) Effects of alpha-crystallin on lens cell function and cataract pathology. Curr Mol Med 9:887–892PubMedCrossRefGoogle Scholar
  11. 11.
    Sousounis K, Tsonis PA (2012) Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genom 6:14CrossRefGoogle Scholar
  12. 12.
    Rumyantseva YV, Fursova AZ, Fedoseeva LA, Kolosova NG (2008) Changes in physicochemical parameters and alpha-crystallin expression in the lens during cataract development in OXYS rats. Biochemistry (Mosc) 73(11):1176–1182CrossRefGoogle Scholar
  13. 13.
    Kopylova LV, Cherepanov IV, Snytnikova OA, Rumyantseva YV, Kolosova NG, Tsentalovich YP, Sagdeev RZ (2011) Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats. Mol Vis 17:1457–1467PubMedCentralPubMedGoogle Scholar
  14. 14.
    Yanshole LV, Cherepanov IV, Snytnikova OA, Yanshole VV, Sagdeev RZ, Tsentalovich YP (2013) Cataract-specific posttranslational modifications and changes in the composition of urea-soluble protein fraction from the rat lens. Mol Vis 19:2196–2208PubMedCentralPubMedGoogle Scholar
  15. 15.
    Kolosova NG, Lebedev PA, Dikalova AE (2004) Comparison of antioxidants in the ability to prevent cataract in prematurely aging OXYS rats. Bull Exp Biol Med 137(3):249–251PubMedCrossRefGoogle Scholar
  16. 16.
    Markovets AM, Saprunova VB, Zhdankina AA, Fursova AZ, Bakeeva LE, Kolosova NG (2011) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 3:44–54Google Scholar
  17. 17.
    Obukhova LA, Skulachev VP, Kolosova NG (2009) Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats. Aging (Albany NY) 1:389–401Google Scholar
  18. 18.
    Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY (1993) The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol 111(6):831–836PubMedCrossRefGoogle Scholar
  19. 19.
    Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1(3):1559–1582PubMedCrossRefGoogle Scholar
  20. 20.
    Snytnikova OA, Kopylova LV, Chernyak EI, Morozov SV, Kolosova NG, Tsentalovich YP (2009) Tryptophan and kynurenine levels in lenses of Wistar and accelerated-senescence OXYS rats. Mol Vis 15:2780–2788PubMedCentralPubMedGoogle Scholar
  21. 21.
    Dobretsov EA, Snytnikova OA, Koptyug IV, Kaptein R, Tsentalovich YP (2013) Magnetic resonance imaging (MRI) study of the water content and transport in rat lenses. Exp Eye Res 113:162–171PubMedCrossRefGoogle Scholar
  22. 22.
    Kolosova NG, Trofimova NA, Shcheglova TV, Sergeeva SV (2005) Increased stress reactivity as a possible factor of early degenerative changes in OXYS rats. Bull Exp Biol Med 139(4):397–399PubMedCrossRefGoogle Scholar
  23. 23.
    Stefanova NA, Fursova AZ, Sarsenbaev KN, Kolosova NG (2011) Effects of Cistanche deserticola on behavior and signs of cataract and retinopathy in senescence-accelerated OXYS rats. J Ethnopharmacol 138(2):624–632PubMedCrossRefGoogle Scholar
  24. 24.
    Snytnikova OA, Tsentalovich YP, Stefanova NA, Fursova AZ, Kaptein R, Sagdeev RZ, Kolosova NG (2012) The therapeutic effect of mitochondria-targeted antioxidant SkQ1 and Cistanche deserticola is associated with increased levels of tryptophan and kynurenine in the rat lens. Dokl Biochem Biophys 447:300–303PubMedCrossRefGoogle Scholar
  25. 25.
    Skulachev VP (2009) New data on biochemical mechanism of programmed senescence of organisms and antioxidant defense of mitochondria. Biochemistry (Mosc) 74(12):1400–1403CrossRefGoogle Scholar
  26. 26.
    Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787(5):437–461PubMedCrossRefGoogle Scholar
  27. 27.
    Stefanova NA, Fursova AZ, Kolosova NG (2010) Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats. J Alzheimers Dis 21(2):479–491PubMedGoogle Scholar
  28. 28.
    Kolosova NG, Lebedev PA, Aidagulova SV, Morozkova TS (2003) OXYS rats as a model of senile cataract. Bull Exp Biol Med 136(4):415–419PubMedCrossRefGoogle Scholar
  29. 29.
    Kolosova NG, Lebedev PA, Fursova AZ, Morozkova TS, Gusarevich OG (2003) Prematurely aging OXYS rats as an animal model of senile cataract in human. Adv Gerontol 12:143–148PubMedGoogle Scholar
  30. 30.
    Gold MG, Reichow SL, O’Neill SE, Weisbrod CR, Langeberg LK, Bruce JE, Gonen T, Scott JD (2012) AKAP2 anchors PKA with aquaporin-0 to support ocular lens transparency. EMBO Mol Med 4(1):15–26PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Nowak RB, Fischer RS, Zoltoski RK, Kuszak JR, Fowler VM (2009) Tropomodulin1 is required for membrane skeleton organization and hexagonal geometry of fiber cells in the mouse lens. J Cell Biol 186(6):915–928PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA (2009) Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 119(7):1837–1848PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Donaldson PJ, Chee KS, Lim JC, Webb KF (2009) Regulation of lens volume: implications for lens transparency. Exp Eye Res 88(2):144–150PubMedCrossRefGoogle Scholar
  34. 34.
    Varadaraj K, Kumari S, Shiels A, Mathias RT (2005) Regulation of aquaporin water permeability in the lens. Invest Ophthalmol Vis Sci 46(4):1393–1402PubMedCrossRefGoogle Scholar
  35. 35.
    Hara A, Matsumoto M, Uga S (1999) Morphological study on cataractogenesis of the Nakano mouse lens. Graefes Arch Clin Exp Ophthalmol 237(3):249–255PubMedCrossRefGoogle Scholar
  36. 36.
    Brennan LA, Kantorow WL, Chauss D, McGreal R, He S, Mattucci L, Wei J, Riazuddin SA, Cvekl A, Hejtmancik JF, Kantorow M (2012) Spatial expression patterns of autophagy genes in the eye lens and induction of autophagy in lens cells. Mol Vis 18:1773–1786PubMedCentralPubMedGoogle Scholar
  37. 37.
    Feeney-Burns L, Burns RP, Anderson RS (1980) Ultrastructure and acid phosphatase activity in hereditary cataracts of deer mice. Invest Ophthalmol Vis Sci 19(7):777–788PubMedGoogle Scholar
  38. 38.
    Danysh BP, Patel TP, Czymmek KJ, Edwards DA, Wang L, Pande J, Duncan MK (2010) Characterizing molecular diffusion in the lens capsule. Matrix Biol 29(3):228–236PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Tholozan FM, Quinlan RA (2007) Lens cells: more than meets the eye. Int J Biochem Cell Biol 39(10):1754–1759PubMedCrossRefGoogle Scholar
  40. 40.
    Ferrell N, Cameron KO, Groszek JJ, Hofmann CL, Li L, Smith RA, Bian A, Shintani A, Zydney AL, Fissell WH (2013) Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane. Biophys J 104(7):1476–1484PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Firtina Z, Danysh BP, Bai X, Gould DB, Kobayashi T, Duncan MK (2009) Abnormal expression of collagen IV in lens activates unfolded protein response resulting in cataract. J Biol Chem 284(51):35872–35884PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Mulhern ML, Madson CJ, Danford A, Ikesugi K, Kador PF, Shinohara T (2006) The unfolded protein response in lens epithelial cells from galactosemic rat lenses. Invest Ophthalmol Vis Sci 47(9):3951–3959PubMedCrossRefGoogle Scholar
  43. 43.
    Ikesugi K, Yamamoto R, Mulhern ML, Shinohara T (2006) Role of the unfolded protein response (UPR) in cataract formation. Exp Eye Res 83(3):508–516PubMedCrossRefGoogle Scholar
  44. 44.
    Watson GW, Andley UP (2010) Activation of the unfolded protein response by a cataract-associated αA-crystallin mutation. Biochem Biophys Res Commun 401(2):192–196PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Reneker LW, Chen H, Overbeek PA (2011) Activation of unfolded protein response in transgenic mouse lenses. Invest Ophthalmol Vis Sci 52(5):2100–2108PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Hayes BP, Fisher RF (1981) The structure of the lens epithelium and its basement membrane in the diabetic state. Curr Eye Res 1(6):317–326PubMedCrossRefGoogle Scholar
  47. 47.
    Bassnett S (1997) Fiber cell denucleation in the primate lens. Invest Ophthalmol Vis Sci 38(9):1678–1687PubMedGoogle Scholar
  48. 48.
    Hawse JR, Hejtmancik JF, Huang Q, Sheets NL, Hosack DA, Lempicki RA, Horwitz J, Kantorow M (2003) Identification and functional clustering of global gene expression differences between human age-related cataract and clear lenses. Mol Vis 9:515–537PubMedCentralPubMedGoogle Scholar
  49. 49.
    Kozhevnikova OS, Korbolina EE, Ershov NI, Kolosova NG (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle 12(11):1745–1761PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Nahomi RB, Wang B, Raghavan CT, Voss O, Doseff AI, Santhoshkumar P, Nagaraj RH (2013) Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts. J Biol Chem 288(18):13022–13035PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Moreau KL, King JA (2012) Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med 18(5):273–282PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Benedek GB (1997) Cataract as a protein condensation disease: the Proctor Lecture. Invest Ophthalmol Vis Sci 38(10):1911–1921PubMedGoogle Scholar
  53. 53.
    Dou G, Sreekumar PG, Spee C, He S, Ryan SJ, Kannan R, Hinton DR (2012) Deficiency of αB crystallin augments ER stress-induced apoptosis by enhancing mitochondrial dysfunction. Free Radic Biol Med 53(5):1111–1122PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366(1568):1278–1292PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Sharma KK, Santhoshkumar P (2009) Lens aging: effects of crystallins. Biochim Biophys Acta 1790(10):1095–1108PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Zhang L, Yan Q, Liu JP, Zou LJ, Liu J, Sun S, Deng M, Gong L, Ji WK, Li DW (2010) Apoptosis: its functions and control in the ocular lens. Curr Mol Med 10:864–875PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yuliya V. Rumyantseva
    • 1
    Email author
  • Elena I. Ryabchikova
    • 2
  • Anjela Z. Fursova
    • 1
    • 3
  • Nataliya G. Kolosova
    • 1
    • 4
  1. 1.Institute of Cytology and GeneticsSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State Regional Clinical HospitalNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations