Advertisement

Safety evaluation of “retina implant alpha IMS”—a prospective clinical trial

  • Veronique B. D. Kitiratschky
  • Katarina StinglEmail author
  • Barbara Wilhelm
  • Tobias Peters
  • Dorothea Besch
  • Helmut Sachs
  • Florian Gekeler
  • Karl Ulrich Bartz-Schmidt
  • Eberhart Zrenner
Basic Science

Abstract

Background

To restore vision in patients with retinitis pigmentosa, several types of electronic devices have been developed to stimulate neurons at different levels along the visual pathway. Subretinal stimulation of the retina with the Retina Implant Alpha IMS (Retina Implant AG, Reutlingen, Germany) has been demonstrated to provide useful vision in daily life. Here we evaluated the safety of this device.

Methods

An interventional, prospective, multi-center, single-arm study was conducted in patients with retinitis pigmentosa with the Retina Implant Alpha IMS. The results from the first nine patients of a single center regarding safety of the device are reported. Any untoward medical occurrence related or unrelated to the tested device was documented and evaluated.

Results

Nine adult subjects were included in the study at the Tübingen site. Seventy-five adverse events occurred in total, and 53 affected the eye and its adnexa. Thirty-one ocular adverse events had a relationship to the implant that was classified as “certain” while 19 had a probable or possible relationship; three had no relationship to the implant. Thirty-nine ocular adverse events resolved without sequelae, two resolved with sequelae, 11 remained unresolved, and in one the status was unknown. The intensity of ocular adverse events was mild in the majority of cases (n = 45), while six were of moderate and two of severe intensity. There was no non-ocular adverse event with certain relationship to the device. One subject lost light perception (without light localization) in her study eye.

Conclusions

In conclusion, this prospective study, “Safety and Efficacy of Subretinal Implants for Partial Restoration of Vision in Blind Patients,” shows that the Retina Implant Alpha IMS is an option for restoring vision using a subretinal stimulation device with a clinically acceptable safety profile.

Keywords

Retina implant Alpha IMS Artificial vision Retintis pigmentosa Retinal degeneration Prospective clinical trial 

Notes

Conflict of interest

Conflicts of interest are as follows: Veronique Kitiratschky: None. Katarina Stingl: Employed by University of Tübingen through a grant provided by Retina Implant AG, Reutlingen for the clinical trial, travel support. Eberhart Zrenner: Stock ownership in Retina Implant AG, Reutlingen, paid consultant, holder of patents as inventor/developer, travel support from Retina Implant AG, Reutlingen. Florian Gekeler, Helmut Sachs: Stock ownership in Retina Implant AG, Reutlingen, paid consultants. Karl-Ulrich Bartz-Schmidt, Dorothea Besch: No financial conflicts of interest. Tobias Peters, Barbara Wilhelm: CRO of the trial on behalf of Retina Implant AG, Reutlingen.

Authors have full control of all primary data and agree to allow the Graefes Archives of Ophthalmology to review their data if requested.

Funding

Retina Implant AG, Reutlingen, Germany

Tistou & Charlotte Kerstan Stiftung, Tübingen, Germany

Bernstein Center for Computational Neuroscience Tübingen, Germany, Project A3

This work was supported by the Deutsche Forschungsgemeinschaft (EXC 307, CIN, Senior-Professorship to E.Z.)

References

  1. 1.
    Chow AY, Bittner AK, Pardue MT (2010) The artificial silicon retina in retinitis pigmentosa patients (an American Ophthalmological Association thesis). Trans Am Ophthalmol Soc 108:120–154PubMedCentralPubMedGoogle Scholar
  2. 2.
    Mokwa W, Goertz M, Koch C et al (2008) Intraocular epiretinal prosthesis to restore vision in blind humans. Conf Proc IEEE Eng Med Biol Soc 2008:5790–5793. doi: 10.1109/IEMBS.2008.4650530 PubMedGoogle Scholar
  3. 3.
    Normann RA, Greger BA, House P et al (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6:035001. doi: 10.1088/1741-2560/6/3/035001 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Rizzo JF, Shire DB, Kelly SK et al (2011) Overview of the boston retinal prosthesis: challenges and opportunities to restore useful vision to the blind. Conf Proc IEEE Eng Med Biol Soc 2011:7492–7495. doi: 10.1109/IEMBS.2011.6093610 PubMedGoogle Scholar
  5. 5.
    Veraart C, Wanet-Defalque M-C, Gérard B et al (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27:996–1004CrossRefPubMedGoogle Scholar
  6. 6.
    Zrenner E, Bartz-Schmidt KU, Benav H et al (2010) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B Biol Sci 278:1489–1497. doi: 10.1098/rspb.2010.1747 CrossRefGoogle Scholar
  7. 7.
    Stingl K, Bartz-Schmidt KU, Besch D et al (2012) What can blind patients see in daily life with the subretinal Alpha IMS implant? Current overview from the clinical trial in Tübingen. Der Ophthalmol Zeitschrift der Dtsch Ophthalmol Gesellschaft 109:136–141. doi: 10.1007/s00347-011-2479-6 CrossRefGoogle Scholar
  8. 8.
    Humayun MS, Dorn JD, da Cruz L et al (2012) Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119:779–788. doi: 10.1016/j.ophtha.2011.09.028 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Zrenner E (2013) Fighting Blindness with Microelectronics. Sci Transl Med 5:210ps16–210ps16. doi:  10.1126/scitranslmed.3007399
  10. 10.
    Stingl K, Bartz-Schmidt KU, Besch D et al (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280:20130077. doi: 10.1098/rspb.2013.0077 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Besch D, Sachs HG, Szurman P et al (2008) Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients. Br J Ophthalmol 92:1361–1368. doi: 10.1136/bjo.2007.131961 CrossRefPubMedGoogle Scholar
  12. 12.
    Demir MN, Unlü N, Yalniz Z et al (2007) A case of retinal detachment in retinitis pigmentosa. Eur J Ophthalmol 17:677–679PubMedGoogle Scholar
  13. 13.
    Hirahara S, Hirano Y, Yasukawa T, Ogura Y (2010) Transient tractional retinal detachment in an eye with retinitis pigmentosa. Clin Ophthalmol 4:1115–1118. doi: 10.2147/OPTH.S13885 PubMedCentralPubMedGoogle Scholar
  14. 14.
    Kusnyerik A, Greppmaier U, Wilke R et al (2012) Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Invest Ophthalmol Vis Sci 53:3748–55. doi: 10.1167/iovs.11-9409 CrossRefPubMedGoogle Scholar
  15. 15.
    Sarkisian SR (2009) Tube shunt complications and their prevention. Curr Opin Ophthalmol 20:126–30. doi: 10.1097/ICU.0b013e328323d519 CrossRefPubMedGoogle Scholar
  16. 16.
    Tsui I (2012) Scleral buckle removal: indications and outcomes. Surv Ophthalmol 57:253–63. doi: 10.1016/j.survophthal.2011.11.001 CrossRefPubMedGoogle Scholar
  17. 17.
    Newsome DA (1986) Retinal fluorescein leakage in retinitis pigmentosa. Am J Ophthalmol 101:354–360CrossRefPubMedGoogle Scholar
  18. 18.
    Khan JA, Ide CH, Strickland MP (1988) Coats’-type retinitis pigmentosa. Surv Ophthalmol 32:317–332CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Veronique B. D. Kitiratschky
    • 1
  • Katarina Stingl
    • 1
    Email author
  • Barbara Wilhelm
    • 1
  • Tobias Peters
    • 1
  • Dorothea Besch
    • 1
  • Helmut Sachs
    • 2
  • Florian Gekeler
    • 1
    • 3
  • Karl Ulrich Bartz-Schmidt
    • 1
  • Eberhart Zrenner
    • 1
    • 4
  1. 1.Centre for OphthalmologyUniversity of TübingenTübingenGermany
  2. 2.AugenklinikKrankenhaus Dresden FriedrichstadtDresdenGermany
  3. 3.KatharinenhospitalStuttgartGermany
  4. 4.Werner Reichardt Centre for Integrative Neuroscience (CIN), Centre for OphthalmologyUniversity of TübingenTübingenGermany

Personalised recommendations