Soluble vascular endothelial growth factor receptor-3 suppresses allosensitization and promotes corneal allograft survival

  • Parisa Emami-Naeini
  • Thomas H. Dohlman
  • Masahiro Omoto
  • Takaaki Hattori
  • Yihe Chen
  • Hyun Soo Lee
  • Sunil K. Chauhan
  • Reza Dana
Basic Science



To investigate the effect of VEGF-C and VEGF-D blockade via soluble VEGFR-3 (sVEGFR-3) on T cell allosensitization, corneal neovascularization, and transplant survival.


Corneal intrastromal suture placement and allogeneic transplantation were performed on BALB/c mice to evaluate the effect of sVEGFR-3 on corneal neovascularization. Soluble VEGFR-3 trap was injected intraperitoneally to block VEGF-C/D (every other day starting the day of surgery). Immunohistochemical staining of corneal whole mounts was performed using anti-CD31 (PECAM-1) and anti-LYVE-1 antibodies to quantify the levels of hem- and lymphangiogenesis, respectively. Mixed lymphocyte reaction (MLR) was performed to assess indirect and direct host T cell allosensitization and the frequencies of IFN-γ-producing T cells in the draining lymph nodes were assessed using flow cytometry. Graft opacity and survival was evaluated by slit-lamp biomicroscopy.


Treatment with sVEGFR-3 resulted in a significant blockade of lymphangiogenesis 2 weeks post-transplantation and significantly prolonged corneal allograft survival compared to the control group at 8 weeks post-transplantation (87.5 % vs. 50 %), and this was associated with significant reduction in the frequencies of allosensitized T cells and decreased frequencies of IFN-γ–producing CD4 T cells.


Soluble VEGFR-3 suppresses corneal lymphangiogenesis and allograft rejection and may offer a viable therapeutic modality for corneal neovascularization and corneal transplantation.


Cornea Transplantation Angiogenesis Allosensitization 



This work was supported by the National Institutes of Health (EY012963) and Circadian Technologies Ltd. The authors thank Dr. Susanne Eiglmeier for her expert advice and assistance in manuscript preparation.

Grant support

NIH EY012963, Circadian Technologies Ltd.


The authors declare that they have no conflicts of interest.


  1. 1.
    Dietrich T, Bock F, Yuen D et al (2010) Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol 184:535–539. doi: 10.4049/jimmunol.0903180 PubMedCrossRefGoogle Scholar
  2. 2.
    Cursiefen C, Cao J, Chen L et al (2004) Inhibition of hemangiogenesis and lymphangiogenesis after normal-risk corneal transplantation by neutralizing VEGF promotes graft survival. Invest Ophthalmol Vis Sci 45:2666–2673. doi: 10.1167/iovs.03-1380 PubMedCrossRefGoogle Scholar
  3. 3.
    Bachmann BO, Bock F, Wiegand SJ et al (2008) Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch Ophthalmol 126:71–77. doi: 10.1001/archopht.126.1.71 PubMedCrossRefGoogle Scholar
  4. 4.
    Dastjerdi MH, Saban DR, Okanobo A et al (2010) Effects of topical and subconjunctival bevacizumab in high-risk corneal transplant survival. Invest Ophthalmol Vis Sci 51:2411–2417. doi: 10.1167/iovs.09-3745 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Dietrich T, Onderka J, Bock F et al (2007) Inhibition of inflammatory lymphangiogenesis by integrin alpha5 blockade. Am J Pathol 171:361–372PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cursiefen C, Chen L, Borges LP et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050. doi: 10.1172/JCI20465 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    McGhee CNJ, Dean S, Danesh-Meyer H (2002) Locally administered ocular corticosteroids: benefits and risks. Drug Saf 25:33–55PubMedCrossRefGoogle Scholar
  8. 8.
    Dana MR, Zhu SN, Yamada J (1998) Topical modulation of interleukin-1 activity in corneal neovascularization. Cornea 17:403–409PubMedCrossRefGoogle Scholar
  9. 9.
    Dana MR, Qian Y, Hamrah P (2000) Twenty-five-year panorama of corneal immunology: emerging concepts in the immunopathogenesis of microbial keratitis, peripheral ulcerative keratitis, and corneal transplant rejection. Cornea 19:625–643PubMedCrossRefGoogle Scholar
  10. 10.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  11. 11.
    Nakao S, Zandi S, Hata Y et al (2011) Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph- and angiogenesis. Blood 117:1081–1090. doi: 10.1182/blood-2010-02-267427 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Cursiefen C, Chen L, Saint-Geniez M et al (2006) Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci U S A 103:11405–11410. doi: 10.1073/pnas.0506112103 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hamrah P, Chen L, Zhang Q, Dana MR (2003) Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 163:57–68. doi: 10.1016/S0002-9440(10)63630-9 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hamrah P, Chen L, Cursiefen C et al (2004) Expression of vascular endothelial growth factor receptor-3 (VEGFR-3) on monocytic bone marrow-derived cells in the conjunctiva. Exp Eye Res 79:553–561. doi: 10.1016/j.exer.2004.06.028 PubMedCrossRefGoogle Scholar
  15. 15.
    Hajrasouliha AR, Funaki T, Sadrai Z et al (2012) Vascular endothelial growth factor-C promotes alloimmunity by amplifying antigen-presenting cell maturation and lymphangiogenesis. Invest Ophthalmol Vis Sci 53:1244–1250. doi: 10.1167/iovs.11-8668 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Chen L, Hamrah P, Cursiefen C et al (2004) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med 10:813–815. doi: 10.1038/nm1078 PubMedCrossRefGoogle Scholar
  17. 17.
    Yang H, Kim C, Kim M-J et al (2011) Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer 10:36. doi: 10.1186/1476-4598-10-36 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Mäkinen T, Jussila L, Veikkola T et al (2001) Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 7:199–205. doi: 10.1038/84651 PubMedCrossRefGoogle Scholar
  19. 19.
    Hattori T, Saban DR, Emami-Naeini P et al (2012) Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J Leukoc Biol 91:621–627. doi: 10.1189/jlb.1011500 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sonoda Y, Streilein JW (1992) Orthotopic corneal transplantation in mice–evidence that the immunogenetic rules of rejection do not apply. Transplantation 54:694–704PubMedCrossRefGoogle Scholar
  21. 21.
    Chung E-S, Chauhan SK, Jin Y et al (2009) Contribution of macrophages to angiogenesis induced by vascular endothelial growth factor receptor-3-specific ligands. Am J Pathol 175:1984–1992. doi: 10.2353/ajpath.2009.080515 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Streilein JW, Bradley D, Sano Y, Sonoda Y (1996) Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated corneas. Invest Ophthalmol Vis Sci 37:413–424PubMedGoogle Scholar
  23. 23.
    Chauhan SK, Saban DR, Dohlman TH, Dana R (2014) CCL-21 conditioned regulatory T cells induce allotolerance through enhanced homing to lymphoid tissue. J Immunol 192:817–823. doi: 10.4049/jimmunol.1203469 PubMedCrossRefGoogle Scholar
  24. 24.
    Stevenson W, Cheng S-F, Emami-Naeini P et al (2012) Gamma-irradiation reduces the allogenicity of donor corneas. Invest Ophthalmol Vis Sci 53:7151–7158. doi: 10.1167/iovs.12-9609 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Zhang H, Grimaldo S, Yuen D, Chen L (2011) Combined blockade of VEGFR-3 and VLA-1 markedly promotes high-risk corneal transplant survival. Invest Ophthalmol Vis Sci 52:6529–6535. doi: 10.1167/iovs.11-7454 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Thelen A, Scholz A, Benckert C et al (2008) VEGF-D promotes tumor growth and lymphatic spread in a mouse model of hepatocellular carcinoma. Int J Cancer 122:2471–2481. doi: 10.1002/ijc.23439 PubMedCrossRefGoogle Scholar
  27. 27.
    Jin Y, Chauhan SK, El Annan J et al (2011) A novel function for programmed death ligand-1 regulation of angiogenesis. Am J Pathol 178:1922–1929. doi: 10.1016/j.ajpath.2010.12.027 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mor F, Quintana FJ, Cohen IR (2004) Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 172:4618–4623PubMedCrossRefGoogle Scholar
  29. 29.
    Pedersen IH, Willerslev-Olsen A, Vetter-Kauczok C et al (2013) Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. Leuk Lymphoma 54:819–826. doi: 10.3109/10428194.2012.726720 PubMedCrossRefGoogle Scholar
  30. 30.
    Singh N, Tiem M, Watkins R et al (2013) Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood 121:4242–4249. doi: 10.1182/blood-2012-08-453043 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dana MR (2004) Corneal antigen-presenting cells: diversity, plasticity, and disguise: the Cogan lecture. Invest Ophthalmol Vis Sci 45:722–727, 721PubMedCrossRefGoogle Scholar
  32. 32.
    Jin Y, Shen L, Chong E-M et al (2007) The chemokine receptor CCR7 mediates corneal antigen-presenting cell trafficking. Mol Vis 13:626–634PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Parisa Emami-Naeini
    • 1
    • 2
  • Thomas H. Dohlman
    • 1
  • Masahiro Omoto
    • 1
  • Takaaki Hattori
    • 1
  • Yihe Chen
    • 1
  • Hyun Soo Lee
    • 1
  • Sunil K. Chauhan
    • 1
  • Reza Dana
    • 1
  1. 1.Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Department of OphthalmologyHarvard Medical SchoolBostonUSA
  2. 2.Kresge Eye InstituteWayne State UniversityDetroitUSA

Personalised recommendations