A new model for in vitro testing of vitreous substitute candidates

  • Henrik BarthEmail author
  • Sven Crafoord
  • Timothy M. O’Shea
  • Christopher D. Pritchard
  • Robert Langer
  • Fredrik Ghosh
Basic Science



To describe a new model for in vitro assessment of novel vitreous substitute candidates.


The biological impact of three vitreous substitute candidates was explored in a retinal explant culture model; a polyalkylimide hydrogel (Bio-Alcamid®), a two component hydrogel of 20 wt.% poly (ethylene glycol) in phosphate buffered saline (PEG) and a cross-linked sodium hyaluronic acid hydrogel (Healaflow®). The gels where applied to explanted adult rat retinas and then kept in culture for 2, 5 and 10 days. Gel-exposed explants were compared with explants incubated under standard tissue culture conditions. Cryosections of the specimens were stained with hematoxylin and eosin, immunohistochemical markers (GFAP, Vimentin, Neurofilament 160, PKC, Rhodopsin) and TUNEL.


Explants kept under standard conditions as well as PEG-exposed explants displayed disruption of retinal layers with moderate pyknosis of all neurons. They also displayed moderate labeling of apoptotic cells. Bio-Alcamid®-exposed explants displayed severe thinning and disruption of retinal layers with massive cell death. Healaflow®-treated explants displayed normal retinal lamination with significantly better preservation of retinal neurons compared with control specimens, and almost no signs of apoptosis. Retinas exposed to Healaflow® and retinas kept under standard conditions showed variable labeling of GFAP with generally low expression and some areas of upregulation. PEG-exposed retinas showed increased GFAP labeling and Bio-Alcamid®-exposed retinas showed sparse labeling of GFAP.


Research into novel vitreous substitutes has important implications for both medical and surgical vitreoretinal disease. The in vitro model presented here provides a method of biocompatibility testing prior to more costly and cumbersome in vivo experiments. The explant culture system imposes reactions within the retina including disruption of layers, cell death and gliosis, and the progression of these reactions can be used for comparison of vitreous substitute candidates. Bio-Alcamid® had strong adverse effects on the retina which is consistent with results of prior in vivo trials. PEG gel elicits reactions similar to the control retinas whereas Healaflow® shows protection from culture-induced trauma indicating favorable biocompatibility.


Vitreous substitute Immunohistochemistry Retinal culture Vitreoretinal surgery Hyaluronic acid Polyethylene oxide Polyal kylimide 



This work was supported by: The Faculty of Medicine, University of Lund, The Swedish Research Council, The Princess Margareta’s Foundation for Blind Children, The Wallenberg Foundation. T.M.O. was supported by a Sir General John Monash Scholarship. Some of this work was sponsored by a gift to MIT by the In Vivo Therapeutics Corporation.

Thanks to Karin Arnér for excellent technical support and Linnéa Taylor for valuable input on the manuscript.

Financial disclosures



The authors have full control of all primary data, available for review by Graefe's Archive for Clinical and Experimental Ophthalmology upon request. The “Principles of laboratory animal care” (NIH publication No. 85–23, revised 1985), the OPRR Public Health Service Policy on the Humane Care and Use of Laboratory Animals (revised 1986) and the U.S. Animal Welfare Act, as amended, were followed, as well as the current version of the Swedish Law on the Protection of Animals, where applicable.


  1. 1.
    Killey FP, Edelhauser HF, Aaberg TM (1978) Intraocular sulfur hexafluoride and octofluorocyclobutane. Effects on intraocular pressure and vitreous volume. Arch Ophthalmol 96(3):511–15Google Scholar
  2. 2.
    Nakamura K, Refojo MF, Crabtree DV, Pastor J, Leong FL (1991) Ocular toxicity of low-molecular-weight components of silicone and fluorosilicone oils. Invest Ophthalmol Vis Sci 32(12):3007–20PubMedGoogle Scholar
  3. 3.
    Colthurst MJ, Williams RL, Hiscott PS, Grierson I (2000) Biomaterials used in the posterior segment of the eye. Biomaterials 21(7):649–65PubMedCrossRefGoogle Scholar
  4. 4.
    Versura P, Cellini M, Bernabini TA, Rossi A, Moretti M, Caramazza R, (2001) The biocompatibility of silicone, fluorosilicone and perfluorocarbon liquids as vitreous tamponades. An ultrastructural and immunohistochemical study. Ophthalmologica 215(4):276–83Google Scholar
  5. 5.
    Vote B, Wheen L, Cluroe A, Teoh H, McGeorge A (2003) Further evidence for proinflammatory nature of perfluorohexyloctane in the eye. Clin Experiment Ophthalmol 31(5):408–14PubMedCrossRefGoogle Scholar
  6. 6.
    Schatz B, El-Shabrawi Y, Haas A, Langmann G (2004) Adverse side effects with perfluorohexyloctane as a long-term tamponade agent in complicated vitreoretinal surgery. Retina 24(4):567–73PubMedCrossRefGoogle Scholar
  7. 7.
    Joussen AM, Wong D (2008) The concept of heavy tamponades-chances and limitations. Graefes Arch Clin Exp Ophthalmol 246(9):1217–24PubMedCrossRefGoogle Scholar
  8. 8.
    Heimann H, Stappler T, Wong D (2008) Heavy tamponade 1: a review of indications, use, and complications. Eye (Lond) 22(10):1342–59CrossRefGoogle Scholar
  9. 9.
    Mackiewicz J, Mühling B, Hiebl W, Meinert H, Maaijwee K, Kociok N, Lüke C, Zagorski Z, Kirchhof B, Joussen AM (2007) In vivo retinal tolerance of various heavy silicone oils. Invest Ophthalmol Vis Sci 48(4):1873–83PubMedCrossRefGoogle Scholar
  10. 10.
    Swindle KE, Ravi N (2007) Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol 2(2):255–265CrossRefGoogle Scholar
  11. 11.
    Shafer DM (1976) Human vitreous transplantation. Ann R Coll Surg Engl 58(1):25–23PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kanski JJ (1975) Intravitreal hyaluronic acid injection : A long-term clinical evaluation. Br J Ophthalmol 59(5):255–6PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Balazs EA, Freeman MI, Klöti R, Meyer-Schwickerath G, Regnault F, Sweeney DB (1972) Hyaluronic acid and replacement of vitreous and aqueous humor. Mod Probl Ophthalmol 10:3–21PubMedGoogle Scholar
  14. 14.
    Denlinger J, El-Mofty A, Balazs E (1980) Replacement of the liquid vitreus with sodium hyaluronate in monkeys II. Long-term evaluation. Exp Eye Res 30:101–117CrossRefGoogle Scholar
  15. 15.
    Kanski JJ, Daniel R (1973) Intravitreal silicone injection in retinal detachment. Br J Ophthalmol 57(8):542–5PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Foster WJ, Aliyar HA, Hamilton P, Ravi N (2006) Internal osmotic pressure as a mechanism of retinal attachment in a vitreous substitute. J Bioact Compat Polym 21(3):221–35CrossRefGoogle Scholar
  17. 17.
    Bae SH, Che J-H, Seo J-M, Jeong J, Kim ET, Lee SW, Koo K-I, Suaning GJ, Lovell NH, Cho D-I, Kim SJ, Chung H (2012) In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis. Invest Ophthalmol Vis Sci 53(6):2653–7PubMedCrossRefGoogle Scholar
  18. 18.
    Su W-Y, Chen K-H, Chen Y-C, Lee Y-H, Tseng C-L, Lin F-H (2011) An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute. J Biomater Sci Polym Ed 22(13):1777–97PubMedCrossRefGoogle Scholar
  19. 19.
    Schramm C, Spitzer MS, Henke-Fahle S, Steinmetz G, Januschowski K, Heiduschka P, Geis- Gerstorfer J, Biedermann T, Bartz-Schmidt KU, Szurman P (2012) The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci 53(2):613–21PubMedCrossRefGoogle Scholar
  20. 20.
    Malchiodi-Albedi F, Matteucci A, Formisano G, Paradisi S, Carnovale-Scalzo G, Scorcia G, Hoerauf H (2005) Induction of apoptosis in rat retinal cell cultures by partially fluorinated alkanes. Am J Ophthalmol 139(4):737–9PubMedCrossRefGoogle Scholar
  21. 21.
    Matteucci A, Formisano G, Paradisi S, Carnovale-Scalzo G, Scorcia G, Caiazza S, Hoerauf H, Malchiodi-Albedi F (2007) Biocompatibility assessment of liquid artificial vitreous replacements: relevance of in vitro studies. Surv Ophthalmol 52(3):289–99PubMedCrossRefGoogle Scholar
  22. 22.
    Schariot GB (2010) Canaloplasty re-establish the natural outflow in patients with chronic open-angle glaucoma. J Current Glau Prac 4(2):97–102CrossRefGoogle Scholar
  23. 23.
    Roy S, Thi HD, Feusier M, Mermoud A (2012) Crosslinked sodium hyaluronate implant in deep sclerectomy for the surgical treatment of glaucoma. Eur J Ophthalmol 22(1):70–6PubMedCrossRefGoogle Scholar
  24. 24.
    Duvvuri S, Janoria KG, Pal D, Mitra AK (2007) Controlled delivery of ganciclovir to the retina with drug-loaded Poly (d, l-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23(3):264–74PubMedCrossRefGoogle Scholar
  25. 25.
    Wathier M, Johnson MS, Carnahan MA, Baer C, McCuen BW, Kim T, Grinstaff MW (2006) In situ polymerized hydrogels for repairing scleral incisions used in pars plana vitrectomy procedures. ChemMedChem 1(8):821–5PubMedCrossRefGoogle Scholar
  26. 26.
    Ramires P, Miccoli M, Panzarini E, Dini L, Protopapa C (2005) In vitro and in vivo biocompatibility evaluation of a polyalkylimide hydrogel for soft tissue augmentation. J Biomed Mater Res B Appl Biomater 72(2):230–238PubMedCrossRefGoogle Scholar
  27. 27.
    Protopapa C, Sito G, Caparole D, Cammarota N (2003) Bio-Alcamid® in drug- induced lipodystrophy. J Cosmet & Laser Ther 5(3–4):1–5Google Scholar
  28. 28.
    Lahiri A, Waters R (2007) Experience with Bio-Alcamid®, a new soft tissue endoprosthesis. J Plast Reconstr Aesthet Surg 60(6):663–667PubMedCrossRefGoogle Scholar
  29. 29.
    Claoue BL, Rabineau P (2004) The polyalkamide gel: experience with Bio-Alcamid®. Semin Cutan Med Surg 23(4):236–240PubMedCrossRefGoogle Scholar
  30. 30.
    Pritchard CD, O'Shea TM, Siegwart DJ, Eliezer C, Anderson DG, Reynolds FM, Thomas JA, Slotkin JR, Woodard EJ, Langer R (2011) An injectable thiol-acrylate poly (ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 32(2):587–97PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lloyd AW, Dropcova S, Faragher RG, Gard PR, Hanlon GW, Mikhalovsky SV, Olliff CJ, Denyer SP, Letko E, Filipec M (1999) The development of in vitro biocompatibility tests for the evaluation of intraocular biomaterials. J Mater Sci Mater Med 10(10–11):621–627Google Scholar
  32. 32.
    Kaempf S, Walter P, Salz AK, Thumann G (2008) Novel organotypic culture model of adult mammalian neurosensory retina in co-culture with retinal pigment epithelium. J Neurosci Methods 173(1):47–58PubMedCrossRefGoogle Scholar
  33. 33.
    Kobuch K, Herrmann WA, Framme C, Sachs HG, Gabel VP, Hillenkamp J (2008) Maintenance of adult porcine retina and retinal pigment epithelium in perfusion culture: characterisation of an organotypic in vitro model. Exp Eye Res 86(4):661–668PubMedCrossRefGoogle Scholar
  34. 34.
    Taylor L, Arnér K, Engelsberg K, Ghosh F (2013) Effects of glial cell line-derived neurotrophic factor on the cultured adult full-thickness porcine retina. Curr Eye Res 38(4):503–515PubMedCrossRefGoogle Scholar
  35. 35.
    Stefansson E (2009) Physiology of vitreous surgery. Graefe's Arch Clin Exp Ophthalmol 247(2):147–163CrossRefGoogle Scholar
  36. 36.
    Chang S (2006) LXII Edward Jackson lecture: open angle glaucoma after vitrectomy. Am J Ophthalmol 141(6):1033–1043PubMedCrossRefGoogle Scholar
  37. 37.
    Crafoord S, Andreasson S, Ghosh F (2011) Experimental vitreous tamponade using polyalkyl-imide hydrogel. Graefes Arch Clin Exp Ophthalmol 249:1167–74PubMedCrossRefGoogle Scholar
  38. 38.
    Pritchard CD, Crafoord S, Andréasson S, Arnér KM, O'Shea TM, Langer R, Ghosh FK (2010) Evaluation of viscoelastic poly (ethylene glycol) sols as vitreous substitutes in an experimental vitrectomy model in rabbits. Acta Biomater 7:936–943PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rauck BM, Friberg TR, Medina Mendez CA, Park D, Shah V, Bilonick RA, Wang Y (2014) Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci 55(1):469–76PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Koster R, Stilma JS (1986) Comparison of vitreous replacement with Healon and with HPMC in rabbits´eyes. Doc Ophthalmol 61:247–253PubMedCrossRefGoogle Scholar
  41. 41.
    Koster R, Stilma JS (1986) Healon as intravitreal substitute in retinal detachment surgery in 40 patients. Doc Ophthalmol 64:13–1PubMedCrossRefGoogle Scholar
  42. 42.
    Gerke E, Meyer-Schwickerath G, Wessing A (1984) Healon in retinal detachment with proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 221:241–3PubMedCrossRefGoogle Scholar
  43. 43.
    Vatne HO, Syrdalen P (1986) The use of sodium hyaluronate (Healon) in the treatment of complicated cases of retinal detachment. Acta Ophthalmol 64:169–72CrossRefGoogle Scholar
  44. 44.
    Taylor L, Moran D, Arnér K, Warrant E, Ghosh F (2013) Stretch to see: lateral tension strongly determines cell survival in long-term cultures of adult porcine retina. Invest Ophthalmol Vis Sci 54(3):1845–56PubMedCrossRefGoogle Scholar
  45. 45.
    Rosengren A, Danielsen N, Bjursten LM (1999) Reactive capsule formation around soft-tissue implants is related to cell necrosis. J Biomed Mater Res 46(4):485–64CrossRefGoogle Scholar
  46. 46.
    Christensen L, Breiting V, Janssen M, Vuust J, Hogdall E (2005) Adverse reactions to injectable soft tissue permanent fillers. Aesthetic Plast Surg 29(1):34–48PubMedCrossRefGoogle Scholar
  47. 47.
    Karim RB, Hage JJ, van Rozelaar L, Lange CAH, Raaijmakers J (2006) Complications of polyalkylimide 4 % injections (Bio-Alcamid): a report of 18 cases. J Plast Reconstr Aesthet Surg 59(12):1409–14PubMedCrossRefGoogle Scholar
  48. 48.
    Nelson L, Stewart KJ (2011) Early and late complications of polyalkylimide gel (Bio-Alcamid)®. J Plast Reconstr Aesthet Surg 64(3):401–4PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Henrik Barth
    • 1
    Email author
  • Sven Crafoord
    • 2
  • Timothy M. O’Shea
    • 3
  • Christopher D. Pritchard
    • 3
  • Robert Langer
    • 3
  • Fredrik Ghosh
    • 1
  1. 1.Department of OphthalmologyLund UniversityLundSweden
  2. 2.Department of Ophthalmology, School of Health and Medical SciencesÖrebro UniversityÖrebroSweden
  3. 3.Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations