Early axonal damage detection by ganglion cell complex analysis with optical coherence tomography in nonarteritic anterior ischaemic optic neuropathy

  • Begoña Arana LarreaEmail author
  • Marta Galdos Iztueta
  • Lorea Martinez Indart
  • Nerea Martinez Alday



To investigate the ability of ganglion cell complex (GCC) analysis by optical coherence tomography (OCT) to detect early axonal damage in nonarteritic anterior ischaemic optic neuropathy (NAION), and to assess the relationship of GCC measurements with visual field defects and function parameters.


Twenty-two patients with NAION participated in this retrospective case-series study. Patients underwent spectral-domain OCT measurement of retinal nerve fibre layer (RNFL) and GCC average and minimum thicknesses, best-corrected visual acuity, Ishihara test and Humphrey visual field (SITA Standard 24–2). These measurements were recorded in the acute (2–6 weeks after the ischaemic episode) and chronic (≥6 months later) phases. Spearman’s coefficients were used to assess the relationship between GCC thickness and visual field defects.


In the acute phase, none of the patients showed atrophy of the optic disc, while early damage was observed in the GCC average and minimum thickness in 54.54 % and 77.27 % of patients. At 6 months, the rate of patients with RNFL below normal limits increased to 90 % in the RNFL, and 92.85 % and 100 % in the GCC average and minimum GCC respectively. Spearman’s coefficients indicated significant relationships of GCC in the acute phase with visual field index and mean deviation in both acute and chronic phases. A significant correlation was also found with location of the defects.


GCC thickness measurement by OCT is capable of detecting early axonal damage in NAION eyes in the acute phase that cannot be detected by RNFL. GCC defects are significantly correlated with visual field globally and the defect location.


Optical coherence tomography (OCT) Ganglion cell complex (GCC) Nonarteritic anterior ischaemic optic neuropathy (NAION) Diagnosis Axonal damage 



We wish to thank Maialen Lopez Aricha, Jose María Losada Domingo, Bárbara Berasategui, and Ana Orive for collected data and care of study patients.

None of the authors have financial, commercial, or proprietary interest in any device mentioned. The authors have no conflicts of interest to declare.


  1. 1.
    Hattenhauer MG, Leavitt JA, Hodge DO et al (1997) Incidence of nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 123(3):103–107PubMedCrossRefGoogle Scholar
  2. 2.
    Kernstock C, Friebe K, Tonagel F (2013) Applications of optical coherence tomography (OCT) in neuro-ophthalmology. Klin Monatsbl Augenheilkd 230(11):1097–1105PubMedCrossRefGoogle Scholar
  3. 3.
    Maekubo T, Chuman H, Kodama Y, Nao-I N (2013) Evaluation of inner retinal thickness around the optic disc using optical coherence tomography of a rodent model of nonarteritic ischemic optic neuropathy. Jpn J Ophthalmol 57(3):327–332PubMedCrossRefGoogle Scholar
  4. 4.
    Savini G, Carbonelli M, Barboni P (2011) Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 22(2):115–123PubMedCrossRefGoogle Scholar
  5. 5.
    Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ (2007) Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology 114:2338–2344PubMedCrossRefGoogle Scholar
  6. 6.
    Contreras I, Rebolleda G, Noval S, Muñoz-Negrete FJ (2007) Optic disc evaluation by optical coherence tomography in nonarteritic anterior Ischemic optic neuropathy. Invest Ophthalmol Vis Sci 48:4087–4092PubMedCrossRefGoogle Scholar
  7. 7.
    Deleón-Ortega J, Carroll KE, Arthur SN, Girkin CA (2007) Correlations between retinal nerve fiber layer and visual field in eyes with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 143:288–294PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hood DC, Anderson S, Rouleau J et al (2008) Retinal nerve fibre structure versus visual field function in patients with ischemic optic neuropathy a test of a linear model. Ophthalmology 115:904–910PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bellusci C, Savini G, Carboneli M, Carelli V, Sadun AA, Barboni P (2008) Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol 246:641–647PubMedCrossRefGoogle Scholar
  10. 10.
    Fernández-Buenaga R, Rebolleda G, Muñoz-Negrete FJ, Contreras I, Casas-Llera P (2009). Macular thickness. Ophthalmology 116(8):1587PubMedCrossRefGoogle Scholar
  11. 11.
    Papchenko T, Grainger BT, Savino PJ, Gamble GD, Danesh-Meyer HV (2012) Macular thickness predictive of visual field sensitivity in ischaemic optic neuropathy. Acta Ophthalmol 90:e463–e469PubMedCrossRefGoogle Scholar
  12. 12.
    Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, Frohman EM, Calabresi PA (2012) Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain 135(Pt 2):521–533PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Renard JP, Fénolland JR, El Chehab H, Francoz M, Marill AM, Messaoudi R, Delbarre M, Maréchal M, Michel S, Giraud JM (2013) Analysis of macular ganglion cell complex (GCC) with spectral-domain optical coherence tomography (SD-OCT) in glaucoma. J Fr Ophtalmol 36(4):299–309PubMedCrossRefGoogle Scholar
  14. 14.
    Aggarwal D, Tan O, Huang D, Sadun AA (2012) Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(8):4539–4545PubMedCrossRefGoogle Scholar
  15. 15.
    Gonul S, kokterik BE, Bakbak B, Gedik S (2013) Comparison of the ganglion cell complex and retinal nerve fibre layer measurements using Fourier domain optical coherence tomography to detect ganglion cell loss in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol 97:1045–1050PubMedCrossRefGoogle Scholar
  16. 16.
    Wang M, Hood DC, Cho JS, Ghadiali Q, De Moraes CG, Zhang X, Ritch R, Liebmann JM (2009) Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch Ophthalmol 127(7):875–881PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fabritius T, Makita S, Miura M, Myllylä R, Yasuno Y (2009) Automated segmentation of the macula by optical coherence tomography. Opt Express 17(18):15659–15669PubMedCrossRefGoogle Scholar
  18. 18.
    Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300(1):5–25PubMedCrossRefGoogle Scholar
  19. 19.
    Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ (2011): Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 52(11):8323–8329PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Marzoli SB, Ciasca P, Curone M, Cammarata G, Melzi L, Criscuoli A, Bussone G, D´Amico D (2013) Quantitative analysis of optic nerve damage in idiopathic intracranial hypertension (IIH) at diagnosis. Neurol Sci 34: S143–S145PubMedCrossRefGoogle Scholar
  21. 21.
    Tan O, Li G, Lu AT, Varma R, Huang D (2008) Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Choi SS, Zawadzki RJ, Keltner JL, Wern JS (2008) Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. Invest Ophthalmol Vis Sci 49:2013–2119CrossRefGoogle Scholar
  23. 23.
    Bernstein SL, Johnson MA, Miller NR (2011) Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res 30(3):167–187PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Goldenberg-Cohen N, Guo Y, Margolis F, Cohen Y, Miller NR, Bernstein SL (2005) Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia. Invest Ophthalmol Vis Sci 46(8):2716–2275PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang C, Guo Y, Slater BJ, Miller NR, Bernstein SL (2010) Axonal degeneration, regeneration and ganglion cell death in a rodent model of anterior ischemic optic neuropathy (rAION). Exp Eye Res 91:286–292PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Ho JK, Stanford MP, Shariati MA, Dalal R, Liao YJ (2013) Optical coherence tomography study of experimental anterior ischemic optic neuropathy and histologic confirmation. Invest Ophthalmol Vis Sci 54:5981–5988PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Kupersmith MJ, Anderson S, Durbin M, Kardon R (2013) Scanning laser polarimetry, but not optical coherence tomography predicts permanent visual field loss in acute nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 54(8):5514–5519PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Begoña Arana Larrea
    • 1
    Email author
  • Marta Galdos Iztueta
    • 1
    • 2
  • Lorea Martinez Indart
    • 3
  • Nerea Martinez Alday
    • 1
  1. 1.Department of OphthalmologyCruces University HospitalBarakaldo, VizcayaSpain
  2. 2.Instituto Clínico Quirúrgico Oftalmológico (ICQO)BilbaoSpain
  3. 3.Clinical Epidemiology Unit, Cruces HospitalVizcayaSpain

Personalised recommendations