Advertisement

Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices

  • Lukas ReznicekEmail author
  • Thomas Klein
  • Wolfgang Wieser
  • Marcus Kernt
  • Armin Wolf
  • Christos Haritoglou
  • Anselm Kampik
  • Robert Huber
  • Aljoscha S. Neubauer
Miscellaneous

Abstract

Background

To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices.

Methods

A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO).

Results

Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)—10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717).

Conclusions

Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high quality cross-sectional and en-face images of the posterior segment.

Keywords

Oct Imaging Retinal imaging Ultra-wide-field Mhz OCT FDML OCT En face Cross-sectional scan Swept source 

Notes

Acknowledgments

We would like to thank the "Gesellschaft der Freunde und Förderer der Augenklinik der LMU München e. V." for generous support of this project.

T.K., W.W. and R.H. acknowledge the support from Prof. W. Zinth at the Ludwig-Maximilians-University Munich. This research was sponsored by the Emmy Noether program of the German Research Foundation (DFG – HU 1006/2-1) as well as by the European Union projects FUN-OCT (FP7 HEALTH, contract no. 201880) and FDML-Raman (FP7 ERC, contract no. 259158).

Competing Interest

None to declare.

Financial interests

R. Huber holds a patent on LightLab Imaging (P).

References

  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254:1178–1181PubMedCrossRefGoogle Scholar
  2. 2.
    Landa G, Su E, Garcia PM, Seiple WH, Rosen RB (2011) Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration. Retina 31:364–370PubMedCrossRefGoogle Scholar
  3. 3.
    Neubauer AS, Priglinger SG, Thiel MJ, May CA, Welge-Lussen UC (2002) Sterile structural imaging of donor cornea by optical coherence tomography. Cornea 21:490–494PubMedCrossRefGoogle Scholar
  4. 4.
    Qiu KL, Zhang MZ (2011) The effect of image quality on retinal nerve fiber layer measurement in Stratus OCT. Am J Ophthalmol 151:384, author reply 384–385PubMedCrossRefGoogle Scholar
  5. 5.
    Reznicek L, Kernt M, Haritoglou C, Kampik A, Ulbig M, Neubauer AS (2010) In vivo characterization of ischemic retina in diabetic retinopathy. Clin Ophthalmol 5:31–35PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Clark ME, McGwin G Jr, Neely D, Feist R, Mason JO 3rd, Thomley M, White MF Jr, Ozaydin B, Girkin CA, Owsley C (2011) Association between retinal thickness measured by spectral-domain optical coherence tomography (OCT) and rod-mediated dark adaptation in non-exudative age-related maculopathy. Br J Ophthalmol 95:1427–1432PubMedCrossRefGoogle Scholar
  7. 7.
    Binder S, Falkner-Radler CI, Hauger C, Matz H, Glittenberg C (2011) Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina 31:1332–1336PubMedCrossRefGoogle Scholar
  8. 8.
    Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444PubMedCrossRefGoogle Scholar
  9. 9.
    Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, Feuer WJ, Puliafito CA, Davis JL, Flynn HW Jr, Esquiabro M (2007) An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol 143:566–583PubMedCrossRefGoogle Scholar
  10. 10.
    Witkin AJ, Vuong LN, Srinivasan VJ, Gorczynska I, Reichel E, Baumal CR, Rogers AH, Schuman JS, Fujimoto JG, Duker JS (2009) High-speed ultrahigh resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration. Ophthalmology 116:956–963PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gorczynska I, Srinivasan VJ, Vuong LN, Chen RW, Liu JJ, Reichel E, Wojtkowski M, Schuman JS, Duker JS, Fujimoto JG (2009) Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration. Br J Ophthalmol 93:603–609PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Ho J, Witkin AJ, Liu J, Chen Y, Fujimoto JG, Schuman JS, Duker JS (2011) Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118:687–693PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Serbecic N, Beutelspacher SC, Aboul-Enein FC, Kircher K, Reitner A, Schmidt-Erfurth U (2011) Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol 95:804–810PubMedCrossRefGoogle Scholar
  14. 14.
    Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG (2008) Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci 49:5103–5110PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S (2009) Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 50:3432–3437PubMedCrossRefGoogle Scholar
  16. 16.
    Klein T, Wieser W, Eigenwillig CM, Biedermann BR, Huber R (2011) Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt Express 19:3044–3062PubMedCrossRefGoogle Scholar
  17. 17.
    Huber R, Wojtkowski M, Fujimoto JG (2006) Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt Express 14:3225–3237PubMedCrossRefGoogle Scholar
  18. 18.
    Huber R, Adler DC, Fujimoto JG (2006) Buffered fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett 31:2975–2977PubMedCrossRefGoogle Scholar
  19. 19.
    Huber R, Adler DC, Srinivasan VJ, Fujimoto JG (2007) Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second. Opt Lett 32:2049–2051PubMedCrossRefGoogle Scholar
  20. 20.
    Kernt M, Cheuteu R, Vounotrypidis E, Haritoglou C, Kampik A, Ulbig MW, Neubauer AS (2011) Focal and panretinal photocoagulation with a navigated laser (NAVILAS(R)). Acta Ophthalmol 89:e662–e664PubMedCrossRefGoogle Scholar
  21. 21.
    Neubauer AS, Kernt M, Haritoglou C, Ulbig M, Kampik A, Kozak I, Oster SF, Hartmann K, Kim J, Freeman WR (2010) image quality of a novel navigated retina laser (NAVILAS®). Paper 1639 at ARVO Meeting 2010Google Scholar
  22. 22.
    Strauss RW, Krieglstein TR, Priglinger SG, Reis W, Ulbig MW, Kampik A, Neubauer AS (2007) Image quality characteristics of a novel colour scanning digital ophthalmoscope (SDO) compared with fundus photography. Ophthalmic Physiol Opt 27:611–618PubMedCrossRefGoogle Scholar
  23. 23.
    Reznicek L, Klein T, Wieser W, Neubauer AS, Eigenwillig C, Biedermann B, Kampik A, Huber H (2012) Ultra high-speed swept source Fourier domain mode locking (FDML) OCT at 1.68, 3.3 and 6.7 MHz — image quality of retinal cross sectional scans. Paper presented at: ARVO Meeting, May 10, 2012; Fort LauderdaleGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lukas Reznicek
    • 1
    Email author
  • Thomas Klein
    • 2
  • Wolfgang Wieser
    • 2
  • Marcus Kernt
    • 1
  • Armin Wolf
    • 1
  • Christos Haritoglou
    • 1
  • Anselm Kampik
    • 1
  • Robert Huber
    • 2
  • Aljoscha S. Neubauer
    • 1
  1. 1.Department of OphthalmologyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Institute for Biomolecular Optics, Faculty of PhysicsLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations