Novel use of 3T MRI in assessment of optic nerve volume in glaucoma

  • Norlina M. Ramli
  • Sabrilhakim Sidek
  • Fadzlina A. Rahman
  • Mohammadreza Peyman
  • Mimiwati Zahari
  • Kartini Rahmat
  • Norlisah Ramli



To measure optic nerve (ON) volume using 3 T magnetic resonance imaging (MRI), to correlate ON volume with retinal nerve fiber layer (RNFL) thickness, and to determine the viability of MRI as an objective tool in distinguishing glaucoma severity.


In this cross-sectional study, 30 severe glaucoma patients, 30 mild glaucoma patients and 30 age-matched controls were recruited. All subjects underwent standard automated perimetry, RNFL analysis and 3 T MRI examinations. Glaucoma patients were classified according to the Hodapp–Anderson–Parish classification. Pearson’s correlation coefficient was used to correlate ON volume with RNFL, and receiver operating curve (ROC) analysis was performed to determine the sensitivity and specificity of ON volume in detecting glaucoma severity.


Optic nerve volume was significantly lower in both the left and right eyes of the severe glaucoma group (168.70 ± 46.28 mm3; 167.40 ± 45.36 mm3) than in the mild glaucoma group (264.03 ± 78.53 mm3; 264.76 ± 78.88 mm3) and the control group (297.80 ± 71.45 mm3; 296.56 ± 71.02 mm3). Moderate correlation was observed between: RNFL thickness and ON volume (r = 0.51, p <0.001), and in mean deviation of visual field and optic nerve volume (r = 0.60, p < 0.001). ON volume below 236 mm3 was 96 % sensitive and 80 % specific for the detection of severe glaucoma.


MRI measured optic nerve volume is a reliable method of assessing glaucomatous damage beyond the optic nerve head. A value of 236 mm3 and below can be used to define severe glaucoma.


Glaucoma MRI Optic nerve volume Retinal nerve fiber layer thickness 


  1. 1.
    Quigley HA (2011) Glaucoma. Lancet 377:1367–1377PubMedCrossRefGoogle Scholar
  2. 2.
    Bowd C, Zangwill LM, Medeiros FA, Tavares IM, Hoffmann EM, Bourne RR, Sample PA, Weinreb RN (2006) Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci 47:2889–2895PubMedCrossRefGoogle Scholar
  3. 3.
    Pueyo V, Polo V, Larrosa JM, Ferreras A, Pablo LE, Honrubia FM (2007) Diagnostic ability of the Heidelberg retina tomograph, optical coherence tomograph, and scanning laser polarimeter in open-angle glaucoma. J Glaucoma 16:173–177PubMedCrossRefGoogle Scholar
  4. 4.
    Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837PubMedCrossRefGoogle Scholar
  5. 5.
    Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, Sanchez-Galeana CA, Vasile C, Weinreb RN (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg retina tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol 119:985–993PubMedCrossRefGoogle Scholar
  6. 6.
    Leung CK, Chan WM, Hui YL, Yung WH, Woo J, Tsang MK, Tse KK (2005) Analysis of retinal nerve fiber layer and optic nerve head in glaucoma with different reference plane offsets, using optical coherence tomography. Invest Ophthalmol Vis Sci 46:891–899PubMedCrossRefGoogle Scholar
  7. 7.
    Chen WW, Wang N, Cai S, Fang Z, Yu M, Wu Q, Tang L, Guo B, Feng Y, Jonas JB, Chen X, Liu X, Gong Q (2013) Structural brain abnormalities in patients with primary open-angle glaucoma: a study with 3 T MR imaging. Invest Ophthalmol Vis Sci 54:545–554PubMedCrossRefGoogle Scholar
  8. 8.
    Chen Z, Lin F, Wang J, Li Z, Dai H, Mu K, Ge J, Zhang H (2012) Diffusion tensor MRI reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin Experiment Ophthalmol 41(1):43–49PubMedCrossRefGoogle Scholar
  9. 9.
    Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti G, Nucci C (2009) Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diffusion-tensor MR imaging. Radiology 252:496–501PubMedCrossRefGoogle Scholar
  10. 10.
    Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI (2012) Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol 33:128–134PubMedCrossRefGoogle Scholar
  11. 11.
    Lagreze WA, Gaggl M, Weigel M, Schulte-Monting J, Buhler A, Bach M, Munk RD, Bley TA (2009) Retrobulbar optic nerve diameter measured by high-speed magnetic resonance imaging as a biomarker for axonal loss in glaucomatous optic atrophy. Invest Ophthalmol Vis Sci 50:4223–4228PubMedCrossRefGoogle Scholar
  12. 12.
    Engelhorn T, Michelson G, Waerntges S, Otto M, El-Rafei A, Struffert T, Doerfler A (2012) Changes of radial diffusivity and fractional anisotropy in the optic nerve and optic radiation of glaucoma patients. ScientificWorldJournal 2012:849632PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Engelhorn T, Haider S, Michelson G, Doerfler A (2010) A new semi-quantitative approach for analysing 3 T diffusion tensor imaging of optic fibres and its clinical evaluation in glaucoma. Acad Radiol 17:1313–1316PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang YQ, Li J, Xu L, Zhang L, Wang ZC, Yang H, Chen CX, Wu XS, Jonas JB (2012) Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmol 90:e295–e302PubMedCrossRefGoogle Scholar
  15. 15.
    Dai H, Yin D, Hu C, Morelli JN, Hu S, Yan X, Xu D (2013) Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology 55:233–243PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Nucci C, Mancino R, Martucci A, Bolacchi F, Manenti G, Cedrone C, Culasso F, Floris R, Cerulli L, Garaci FG (2012) 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and stratus optical coherence tomography findings. Br J Ophthalmol 96:976–980PubMedCrossRefGoogle Scholar
  17. 17.
    Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM, Cornelissen FW (2011) Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 52:2758–2766PubMedCrossRefGoogle Scholar
  18. 18.
    Hodapp E, Anderson DR (1993) Clinical decisions in glaucoma, Vol. 1. Mosby, St Louis, p 204Google Scholar
  19. 19.
    Tench CR (2013) NeuRoi image analysis software. The University of Nottingham UK. 19 August 2013
  20. 20.
    Smith J (2013) MRIConvert and mcverter. University of Oregon.∼jolinda/MRIConvert/. 19 August 2013
  21. 21.
    Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, Witt KA (1991) Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 109:77–83PubMedCrossRefGoogle Scholar
  22. 22.
    Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481PubMedCrossRefGoogle Scholar
  23. 23.
    Gupta N, Yucel YH (2007) What changes can we expect in the brain of glaucoma patients? Surv Ophthalmol 52(Suppl 2):S122–S126PubMedCrossRefGoogle Scholar
  24. 24.
    Weber AJ, Chen H, Hubbard WC, Kaufman PL (2000) Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci 41:1370–1379PubMedGoogle Scholar
  25. 25.
    Kashiwagi K, Okubo T, Tsukahara S (2004) Association of magnetic resonance imaging of anterior optic pathway with glaucomatous visual field damage and optic disc cupping. J Glaucoma 13:189–195PubMedCrossRefGoogle Scholar
  26. 26.
    Inglese M, Rovaris M, Bianchi S, La Mantia L, Mancardi GL, Ghezzi A, Montagna P, Salvi F, Filippi M (2001) Magnetic resonance imaging, magnetisation transfer imaging, and diffusion weighted imaging correlates of optic nerve, brain, and cervical cord damage in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 70:444–449PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Poinoosawmy D, Fontana L, Wu JX, Fitzke FW, Hitchings RA (1997) Variation of nerve fibre layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 81:350–354PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Seider MI, Lee RY, Wang D, Pekmezci M, Porco TC, Lin SC (2009) Optic disk size variability between African, Asian, white, Hispanic, and Filipino Americans using Heidelberg retinal tomography. J Glaucoma 18:595–600PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, Varma R, Greenfield D, Liebmann J, Araie M, Tomita G, Maeda N, Garway-Heath DF (2011) Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology 118:2403–2408PubMedCrossRefGoogle Scholar
  30. 30.
    Bolacchi F, Garaci FG, Martucci A, Meschini A, Fornari M, Marziali S, Mancino R, Squillaci E, Floris R, Cerulli L, Simonetti G, Nucci C (2012) Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Invest Ophthalmol Vis Sci 53:4191–4196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Norlina M. Ramli
    • 1
  • Sabrilhakim Sidek
    • 2
    • 3
  • Fadzlina A. Rahman
    • 1
  • Mohammadreza Peyman
    • 1
  • Mimiwati Zahari
    • 1
  • Kartini Rahmat
    • 2
  • Norlisah Ramli
    • 2
  1. 1.Department of OphthalmologyUniversity of Malaya Eye Research Centre, University MalayaKuala LumpurMalaysia
  2. 2.Department of Biomedical ImagingUniversity Malaya Research Imaging CentreKuala LumpurMalaysia
  3. 3.Medical Imaging Unit, Faculty of MedicineUniversiti Teknologi MARASelangorMalaysia

Personalised recommendations