Skip to main content

Advertisement

Log in

Oxygen-induced retinopathy induces short-term glial stress and long-term impairment of photoentrainment in mice

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Retinopathy of prematurity is a serious potentially blinding disease of pre-term infants. There is extensive vascular remodeling and tissue stress, but data concerning alterations in retinal neurons and glia, and long-term functional sequelae are still incomplete.

Methods

ROP was induced using the oxygen-induced retinopathy (OIR) mouse model. Postnatal day 7 (P7) 129SVE mice were exposed to hyperoxia (75 ± 0.5 % oxygen) for 5 days, and then returned to normoxia to induce OIR. Exposed animals were euthanized at 5 (P17-OIR) and 14 days (P26-OIR) after return to normal air, together with corresponding age-matched control mice (P17-C and P26-C respectively) raised only in room air. Their retinas were examined by immunohistochemistry using a battery of antibodies against key glial and neuronal proteins. A further group of OIR mice and controls were examined at 10 weeks of age for their ability to re-entrain to changing 12 h light/12 h dark cycles, assayed by wheel-running actimetry. In this protocol, animals were subjected to three successive conditions of 300 lux, 15 lux and 1 lux ambient light intensity coupled with 6 hours of jetlag. Animals were euthanized at 4 months of age and used in immunoblotting for rhodopsin.

Results

Compared to P17-C, immunohistochemical staining of P17-OIR sections showed up-regulation of stress-related and glutamate-regulatory proteins in astrocytes and Müller glial cells. In contrast, glial phenotypic expression in P26-OIR retinas largely resembled that in P26-C. There was no loss in total retinal ganglion cells (RGC) at either P17-OIR or P26-OIR compared to corresponding controls, whereas intrinsically photosensitive RGC showed significant decreases, with 375 ± 13/field in P26-OIR compared to 443 ± 30/field in P26-C (p < 0.05). Wheel actimetry performed on control and OIR-treated mice at 4 months demonstrated that animals raised in hyperoxic conditions had impaired photoentrainment at low illuminance of 1 lux, as well as significantly reduced levels of rhodopsin compared to age-matched controls.

Conclusions

OIR leads to transient up-regulation of retinal glial proteins involved in metabolism, and partial degeneration of intrinsically photosensitive RGC and rod photoreceptors. OIR affects circadian photo-entrainment at low illuminance values, possibly by affecting the rod pathway and/or intrinsically photosensitive RGC input to the circadian clock. This study hence shows that retinopathy of prematurity affects light-regulated circadian behavior in an animal model, and may induce similar problems in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140. doi:10.1007/s10456-007-9066-0

    Article  PubMed  Google Scholar 

  2. Smith LE (2002) Pathogenesis of retinopathy of prematurity. Acta Paediatr Suppl 91:26–28

    Article  PubMed  CAS  Google Scholar 

  3. Schaffer DB, Palmer EA, Plotsky DF, Metz HS, Flynn JT, Tung B, Hardy RJ (1993) Prognostic factors in the natural course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology 100:230–237

    Article  PubMed  CAS  Google Scholar 

  4. Gilbert C, Rahi J, Eckstein M, O'Sullivan J, Foster A (1997) Retinopathy of prematurity in middle-income countries. Lancet 350:12–14. doi:10.1016/S0140-6736(97)01107-0

    Article  PubMed  CAS  Google Scholar 

  5. Courtright P, Hutchinson AK, Lewallen S (2011) Visual impairment in children in middle- and lower-income countries. Arch Dis Child 96:1129–1134. doi:10.1136/archdischild-2011-300093

    Article  PubMed  Google Scholar 

  6. Madan A, Penn JS (2003) Animal models of oxygen-induced retinopathy. Front Biosci 8:d1030–d1043

    Article  PubMed  CAS  Google Scholar 

  7. Rivera JC, Sapieha P, Joyal JS, Duhamel F, Shao Z, Sitaras N, Picard E, Zhou E, Lachapelle P, Chemtob S (2011) Understanding retinopathy of prematurity: update on pathogenesis. Neonatology 100:343–353. doi:10.1159/000330174

    Article  PubMed  CAS  Google Scholar 

  8. Fletcher EL, Downie LE, Hatzopoulos K, Vessey KA, Ward MM, Chow CL, Pianta MJ, Vingrys AJ, Kalloniatis M, Wilkinson-Berka JL (2010) The significance of neuronal and glial cell changes in the rat retina during oxygen-induced retinopathy. Doc Ophthalmol 120:67–86. doi:10.1007/s10633-009-9193-6

    Article  PubMed  Google Scholar 

  9. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  10. Lachapelle P, Dembinska O, Rojas LM, Benoit J, Almazan G, Chemtob S (1999) Persistent functional and structural retinal anomalies in newborn rats exposed to hyperoxia. Can J Physiol Pharmacol 77:48–55

    Article  PubMed  CAS  Google Scholar 

  11. Vessey KA, Wilkinson-Berka JL, Fletcher EL (2011) Characterization of retinal function and glial cell response in a mouse model of oxygen-induced retinopathy. J Comp Neurol 519:506–527. doi:10.1002/cne.22530

    Article  PubMed  CAS  Google Scholar 

  12. Akula JD, Favazza TL, Mocko JA, Benador IY, Asturias AL, Kleinman MS, Hansen RM, Fulton AB (2010) The anatomy of the rat eye with oxygen-induced retinopathy. Doc Ophthalmol 120:41–50. doi:10.1007/s10633-009-9198-1

    Article  PubMed  Google Scholar 

  13. Dorfman A, Dembinska O, Chemtob S, Lachapelle P (2008) Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest Ophthalmol Vis Sci 49:458–466. doi:10.1167/iovs.07-0916

    Article  PubMed  Google Scholar 

  14. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2007) Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol 504:404–417. doi:10.1002/cne.21449

    Article  PubMed  CAS  Google Scholar 

  15. Sirinyan M, Sennlaub F, Dorfman A, Sapieha P, Gobeil F Jr, Hardy P, Lachapelle P, Chemtob S (2006) Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject. Stroke 37:2807–2815. doi:10.1161/01.STR.0000245082.19294.ff

    Article  PubMed  CAS  Google Scholar 

  16. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070. doi:10.1126/science.1069609

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Galindo-Romero C, Jimenez-Lopez M, Garcia-Ayuso D, Salinas-Navarro M, Nadal-Nicolas FM, Agudo-Barriuso M, Villegas-Perez MP, Aviles-Trigueros M, Vidal-Sanz M (2013) Number and spatial distribution of intrinsically photosensitive retinal ganglion cells in the adult albino rat. Exp Eye Res. doi:10.1016/j.exer.2012.12.010

    PubMed  Google Scholar 

  18. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95:340–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    PubMed  CAS  Google Scholar 

  20. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 169:39–50

    Article  PubMed  CAS  Google Scholar 

  21. Johnston CJ, Stripp BR, Piedbeouf B, Wright TW, Mango GW, Reed CK, Finkelstein JN (1998) Inflammatory and epithelial responses in mouse strains that differ in sensitivity to hyperoxic injury. Exp Lung Res 24:189–202. doi:10.3109/01902149809099582

    Article  PubMed  CAS  Google Scholar 

  22. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35:3429–3435

    PubMed  CAS  Google Scholar 

  23. Challet E, Dumont S, Mehdi MK, Allemann C, Bousser T, Gourmelen S, Sage-Ciocca D, Hicks D, Pevet P, Claustrat B (2013) Aging-like circadian disturbances in folate-deficient mice. Neurobiol Aging 34(6):1589–1598. doi:10.1016/j.neurobiolaging.2012.11.021

    Article  PubMed  CAS  Google Scholar 

  24. Saidi T, Mbarek S, Omri S, Behar-Cohen F, Chaouacha-Chekir RB, Hicks D (2011) The sand rat, Psammomys obesus, develops type 2 diabetic retinopathy similar to humans. Invest Ophthalmol Vis Sci 52:8993–9004. doi:10.1167/iovs.11-8423

    Article  PubMed  Google Scholar 

  25. Browning J, Wylie CK, Gole G (1997) Quantification of oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 38:1168–1174

    PubMed  CAS  Google Scholar 

  26. Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL, Smith LE (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4:1565–1573. doi:10.1038/nprot.2009.187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Liu Y, Liang X, Xu C, Xie S, Kuang W, Liu Z (2006) Quantification of oxygen-induced retinopathy in the mouse. Yan Ke Xue Bao 22:103–106, 124

    PubMed  CAS  Google Scholar 

  28. Verardo MR, Lewis GP, Takeda M, Linberg KA, Byun J, Luna G, Wilhelmsson U, Pekny M, Chen DF, Fisher SK (2008) Abnormal reactivity of muller cells after retinal detachment in mice deficient in GFAP and vimentin. Invest Ophthalmol Vis Sci 49:3659–3665. doi:10.1167/iovs.07-1474

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    Article  PubMed  CAS  Google Scholar 

  30. Wurm A, Iandiev I, Uhlmann S, Wiedemann P, Reichenbach A, Bringmann A, Pannicke T (2011) Effects of ischemia-reperfusion on physiological properties of Muller glial cells in the porcine retina. Invest Ophthalmol Vis Sci 52:3360–3367. doi:10.1167/iovs.10-6901

    Article  PubMed  CAS  Google Scholar 

  31. Rothermundt M, Peters M, Prehn JH, Arolt V (2003) S100B in brain damage and neurodegeneration. Microsc Res Tech 60:614–632. doi:10.1002/jemt.10303

    Article  PubMed  CAS  Google Scholar 

  32. Van Eldik LJ, Wainwright MS (2003) The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21:97–108

    PubMed  Google Scholar 

  33. Harada T, Harada C, Watanabe M, Inoue Y, Sakagawa T, Nakayama N, Sasaki S, Okuyama S, Watase K, Wada K, Tanaka K (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc Natl Acad Sci U S A 95:4663–4666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Ward MM, Jobling AI, Puthussery T, Foster LE, Fletcher EL (2004) Localization and expression of the glutamate transporter, excitatory amino acid transporter 4, within astrocytes of the rat retina. Cell Tissue Res 315:305–310. doi:10.1007/s00441-003-0849-3

    Article  PubMed  CAS  Google Scholar 

  35. Luo X, Heidinger V, Picaud S, Lambrou G, Dreyfus H, Sahel J, Hicks D (2001) Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 42:1096–1106

    PubMed  CAS  Google Scholar 

  36. Luo X, Lambrou GN, Sahel JA, Hicks D (2001) Hypoglycemia induces general neuronal death, whereas hypoxia and glutamate transport blockade lead to selective retinal ganglion cell death in vitro. Invest Ophthalmol Vis Sci 42:2695–2705

    PubMed  CAS  Google Scholar 

  37. Heidinger V, Hicks D, Sahel J, Dreyfus H (1999) Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions. Glia 25:229–239

    Article  PubMed  CAS  Google Scholar 

  38. Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747

    PubMed  CAS  Google Scholar 

  40. Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H, Hackett SF, Okamoto N, Zack DJ, Semenza GL, Campochiaro PA (1999) Hypoxia inducible factor-1alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40:182–189

    PubMed  CAS  Google Scholar 

  41. Narayanan SP, Suwanpradid J, Saul A, Xu Z, Still A, Caldwell RW, Caldwell RB (2011) Arginase 2 deletion reduces neuro-glial injury and improves retinal function in a model of retinopathy of prematurity. PLoS ONE 6:e22460

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM (2008) Glaucoma alters the circadian timing system. PLoS ONE 3:e3931

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Boudard DL, Mendoza J, Hicks D (2009) Loss of photic entrainment at low illuminances in rats with acute photoreceptor degeneration. Eur J Neurosci 30:1527–1536

    Article  PubMed  Google Scholar 

  44. Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3:e3153

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3:e2451

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453:102–105. doi:10.1038/nature06829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, Hattar S (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13:1107–1112. doi:10.1038/nn.2617

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Dorfman AL, Joly S, Hardy P, Chemtob S, Lachapelle P (2009) The effect of oxygen and light on the structure and function of the neonatal rat retina. Doc Ophthalmol 118:37–54. doi:10.1007/s10633-008-9128-7

    Article  PubMed  CAS  Google Scholar 

  49. Zepeda-Romero LC, Barrera-de-Leon JC, Camacho-Choza C, Gonzalez Bernal C, Camarena-Garcia E, Diaz-Alatorre C, Gutierrez-Padilla JA, Gilbert C (2011) Retinopathy of prematurity as a major cause of severe visual impairment and blindness in children in schools for the blind in Guadalajara City, Mexico. Br J Ophthalmol 95:1502–1505. doi:10.1136/bjophthalmol-2011-300015

    Article  PubMed  CAS  Google Scholar 

  50. Tasman W, Brown GC (1989) Progressive visual loss in adults with retinopathy of prematurity (ROP). Graefes Arch Clin Exp Ophthalmol 227:309–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr L. Smith for her personal guidance on the choice of our animal model. We are grateful to Dr J. Mendoza for his valuable input in the analysis of actograms and statistical data. Our work was supported by a doctoral fellowship from the Higher Education Commission (HEC) of Pakistan.

Conflict of interest

The authors declare no conflict of interest in the making of these experiments, and did not receive any financial assistance other than grant support to MM and DH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hicks.

Additional information

The authors have full control of all primary data, and they agree to allow Graefe's Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdi, M.K.i.M., Sage-Ciocca, D., Challet, E. et al. Oxygen-induced retinopathy induces short-term glial stress and long-term impairment of photoentrainment in mice. Graefes Arch Clin Exp Ophthalmol 252, 595–608 (2014). https://doi.org/10.1007/s00417-014-2579-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2579-5

Keywords

Navigation