Tomographic comparison of cone-rod and rod-cone retinal dystrophies

  • Emiko Inui
  • Akio OishiEmail author
  • Maho Oishi
  • Ken Ogino
  • Yukiko Makiyama
  • Norimoto Gotoh
  • Masafumi Kurimoto
  • Nagahisa Yoshimura
Retinal Disorders



To investigate the relationship between impairment of cone/rod photoreceptors and changes in optical coherence tomography (OCT) findings.


We retrospectively reviewed the clinical records of 35 patients with cone-rod dystrophy (CRD) and 35 visual acuity-matched patients with retinitis pigmentosa (RP). The presence or absence of the external limiting membrane (ELM), inner segment ellipsoid (ISe), interdigitation zone (IZ), and foveal cavitation (hyporeflective space in the outer retina) were determined using OCT image evaluation.


There were no statistical differences in the number of CRD and RP patients with an intact ELM and ISe. None of the CRD patients had an intact IZ, but 20 % of RP patients did (P = 0.011). In addition, foveal cavitation tended to be observed more frequently in CRD patients than (25.7 %) in RP patients (5.7 %) despite the difference not being significant after the correction of multiple comparison.


Eyes with CRD and RP had significant differences in foveal morphology, even when visual acuity was matched. This result supports the notion that absence of an IZ and the presence of foveal cavitation is related to cone-dominant photoreceptor impairment.


Cone-rod dystrophy Retinitis pigmentosa Optical coherence tomography 



This study was supported, in part, by the Japan Ministry of Health, Labor and Welfare (No. 12103069). The funding organization had no role in the design or conduct of this research.

Conflicts of interest

Nagahisa Yoshimura receives financial support from Topcon, Nidek and Canon. He is also a paid consultant of Nidek.


  1. 1.
    Drexler W (2007) Cellular and functional optical coherence tomography of the human retina: the Cogan lecture. Invest Ophthalmol Vis Sci 48:5339–5351PubMedCrossRefGoogle Scholar
  2. 2.
    Adhi M, Duker JS (2013) Optical coherence tomography–current and future applications. Curr Opin Ophthalmol 24:213–221PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Spaide RF (2012) Questioning optical coherence tomography. Ophthalmology 119(2203–2204):e2201Google Scholar
  4. 4.
    Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Wong IY, Iu LP, Koizumi H, Lai WW (2012) The inner segment/outer segment junction: what have we learnt so far? Curr Opin Ophthalmol 23:210–218PubMedCrossRefGoogle Scholar
  6. 6.
    Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809PubMedCrossRefGoogle Scholar
  7. 7.
    Michaelides M, Hunt DM, Moore AT (2004) The cone dysfunction syndromes. Br J Ophthalmol 88:291–297PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:1–7CrossRefGoogle Scholar
  9. 9.
    Mitamura Y, Mitamura-Aizawa S, Nagasawa T, Katome T, Eguchi H, Naito T (2012) Diagnostic imaging in patients with retinitis pigmentosa. J Med Invest 59:1–11PubMedCrossRefGoogle Scholar
  10. 10.
    Oishi A, Nakamura H, Tatsumi I, Sasahara M, Kojima H, Kurimoto M, Otani A, Yoshimura N (2009) Optical coherence tomographic pattern and focal electroretinogram in patients with retinitis pigmentosa. Eye 23:299–303PubMedCrossRefGoogle Scholar
  11. 11.
    Oishi A, Otani A, Sasahara M, Kojima H, Nakamura H, Kurimoto M, Yoshimura N (2009) Photoreceptor integrity and visual acuity in cystoid macular oedema associated with retinitis pigmentosa. Eye 23:1411–1416PubMedCrossRefGoogle Scholar
  12. 12.
    Hagiwara A, Mitamura Y, Kumagai K, Baba T, Yamamoto S (2013) Photoreceptor impairment on optical coherence tomographic images in patients with retinitis pigmentosa. Br J Ophthalmol 97:237–238PubMedCrossRefGoogle Scholar
  13. 13.
    Cho SC, Woo SJ, Park KH, Hwang JM (2013) Morphologic characteristics of the outer retina in cone dystrophy on spectral-domain optical coherence tomography. Korean J Ophthalmol 27:19–27PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zahlava J, Lestak J, Karel I (2013) Optical coherence tomography in progressive cone dystrophy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. doi: 10.5507/bp.2013.017 PubMedGoogle Scholar
  15. 15.
    Hood DC, Zhang X, Ramachandran R, Talamini CL, Raza A, Greenberg JP, Sherman J, Tsang SH, Birch DG (2011) The inner segment/outer segment border seen on optical coherence tomography is less intense in patients with diminished cone function. Invest Ophthalmol Vis Sci 52:9703–9709PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Sergouniotis PI, Holder GE, Robson AG, Michaelides M, Webster AR, Moore AT (2012) High-resolution optical coherence tomography imaging in KCNV2 retinopathy. Br J Ophthalmol 96:213–217PubMedCrossRefGoogle Scholar
  17. 17.
    Vincent A, Wright T, Garcia-Sanchez Y, Kisilak M, Campbell M, Westall C, Heon E (2013) Phenotypic characteristics including in vivo cone photoreceptor mosaic in KCNV2-related “cone dystrophy with supernormal rod electroretinogram”. Invest Ophthalmol Vis Sci 54:898–908PubMedCrossRefGoogle Scholar
  18. 18.
    Yokochi M, Li D, Horiguchi M, Kishi S (2012) Inverse pattern of photoreceptor abnormalities in retinitis pigmentosa and cone-rod dystrophy. Doc Ophthalmol 125:211–218PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lima LH, Sallum JM, Spaide RF (2013) Outer retina analysis by optical coherence tomography in cone-rod dystrophy patients. Retina 33:1877–1880PubMedCrossRefGoogle Scholar
  20. 20.
    Shimozono M, Oishi A, Hata M, Matsuki T, Ito S, Ishida K, Kurimoto Y (2012) The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am J Ophthalmol 153:698–704, 704 e691PubMedCrossRefGoogle Scholar
  21. 21.
    Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77PubMedCrossRefGoogle Scholar
  22. 22.
    Leng T, Marmor MF, Kellner U, Thompson DA, Renner AB, Moore W, Sowden JC (2012) Foveal cavitation as an optical coherence tomography finding in central cone dysfunction. Retina 32:1411–1419PubMedGoogle Scholar
  23. 23.
    Thomas MG, McLean RJ, Kohl S, Sheth V, Gottlob I (2012) Early signs of longitudinal progressive cone photoreceptor degeneration in achromatopsia. Br J Ophthalmol 96:1232–1236PubMedCrossRefGoogle Scholar
  24. 24.
    Barthelmes D, Sutter FK, Kurz-Levin MM, Bosch MM, Helbig H, Niemeyer G, Fleischhauer JC (2006) Quantitative analysis of OCT characteristics in patients with achromatopsia and blue-cone monochromatism. Invest Ophthalmol Vis Sci 47:1161–1166PubMedCrossRefGoogle Scholar
  25. 25.
    Thiadens AA, Somervuo V, van den Born LI, Roosing S, van Schooneveld MJ, Kuijpers RW, van Moll-Ramirez N, Cremers FP, Hoyng CB, Klaver CC (2010) Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 51:5952–5957PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emiko Inui
    • 1
  • Akio Oishi
    • 1
    Email author
  • Maho Oishi
    • 1
  • Ken Ogino
    • 1
  • Yukiko Makiyama
    • 1
  • Norimoto Gotoh
    • 1
  • Masafumi Kurimoto
    • 1
  • Nagahisa Yoshimura
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations