Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy

  • Richard M. FeistJr.
  • Jeffery L. King
  • Robert Morris
  • C. Douglas Witherspoon
  • Clyde Guidry
Pathology

Abstract

Background

To evaluate origins of the fibrocontractive cell populations and their relation to collagens I and II in proliferative vitreoretinopathy (PVR).

Methods

Human PVR membranes were evaluated by indirect immunofluorescence for GFAP, cytokeratin-18 (CK-18), α-smooth muscle actin (αSMA), collagens I and II. Collagen expression by porcine Müller and retinal pigment epithelial cells (RPE) was evaluated using RT-PCR of RNA harvested from freshly isolated primary and proliferating cultures.

Results

Collagen I was detected in all PVR samples and was widely distributed in the extracellular matrix. In contrast, collagen II was present in only two of the ten samples and was localized to thin, acellular bands near the border of the tissues. Using cell type-specific markers CK-18 and GFAP, RPE and glia were localized to the collagen I-rich matrices. Cells positive for GFAP and CK-18 can also co-express αSMA. Normal and proliferating RPE express collagen I, but Müller cells show no evidence of collagen I expression until they proliferate in culture. In contrast, normal RPE and Müller cells contain message for collagen II which is lost shortly after introduction into culture.

Conclusions

Collagen I appears to be the predominate fibrillar collagen in human PVR membranes and collagen II a comparatively minor component. Müller cells and RPE are physically associated with the collagen I matrix and are capable of expressing this protein suggesting that they are the origin. It also appears that the majority of myofibroblasts in PVR membranes are derived from either RPE or Müller cells suggesting that they play a major role in membrane development.

Keywords

Müller Collagen Epiretinal Myofibroblast Proliferative Vitreoretinopathy 

References

  1. 1.
    Alexander P, Prasad R, Ang A, Poulson AV, Scott JD, Snead MP (2008) Prevention and control of proliferative vitreoretinopathy: primary retinal detachment surgery using silicone oil as a planned two-stage procedure in high-risk cases. Eye (Lond) 22:815–818CrossRefGoogle Scholar
  2. 2.
    Kon CH, Asaria RH, Occleston NL, Khaw PT, Aylward GW (2000) Risk factors for proliferative vitreoretinopathy after primary vitrectomy: a prospective study. Br J Ophthalmol 84:506–511PubMedCrossRefGoogle Scholar
  3. 3.
    Girard P, Mimoun G, Karpouzas I, Montefiore G (1994) Clinical risk factors for proliferative vitreoretinopathy after retinal detachment surgery. Retina 14:417–424PubMedCrossRefGoogle Scholar
  4. 4.
    Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43:3–18PubMedCrossRefGoogle Scholar
  5. 5.
    Tseng W, Cortez RT, Ramirez G, Stinnett S, Jaffe GJ (2004) Prevalence and risk factors for proliferative vitreoretinopathy in eyes with rhegmatogenous retinal detachment but no previous vitreoretinal surgery. Am J Ophthalmol 137:1105–1115PubMedCrossRefGoogle Scholar
  6. 6.
    Kampik A, Kenyon KR, Michels RG, Green WR, de la Cruz ZC (1981) Epiretinal and vitreous membranes. Comparative study of 56 cases. Arch Ophthalmol 99:1445–1454PubMedCrossRefGoogle Scholar
  7. 7.
    Jerdan JA, Pepose JS, Michels RG, Hayashi H, de Bustros S, Sebag M, Glaser BM (1989) Proliferative vitreoretinopathy membranes. An immunohistochemical study. Ophthalmology 96:801–810PubMedCrossRefGoogle Scholar
  8. 8.
    Morino I, Hiscott P, McKechnie N, Grierson I (1990) Variation in epiretinal membrane components with clinical duration of the proliferative tissue. Br J Ophthalmol 74:393–399PubMedCrossRefGoogle Scholar
  9. 9.
    Okada M, Ogino N, Matsumura M, Honda Y, Nagai Y (1995) Histological and immunohistochemical study of idiopathic epiretinal membrane. Ophthalmic Res 27:118–128PubMedCrossRefGoogle Scholar
  10. 10.
    Casaroli-Marano RP, Pagan R, Vilaro S (1999) Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 40:2062–2072PubMedGoogle Scholar
  11. 11.
    Sramek SJ, Wallow IH, Stevens TS, Nork TM (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96:835–841PubMedCrossRefGoogle Scholar
  12. 12.
    Grisanti S, Guidry C (1995) Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 36:391–405PubMedGoogle Scholar
  13. 13.
    Guidry C (1996) Isolation and characterization of porcine Muller cells. Myofibroblastic dedifferentiation in culture. Invest Ophthalmol Vis Sci 37:740–752PubMedGoogle Scholar
  14. 14.
    Guidry C, Bradley KM, King JL (2003) Tractional force generation by human muller cells: growth factor responsiveness and integrin receptor involvement. Invest Ophthalmol Vis Sci 44:1355–1363PubMedCrossRefGoogle Scholar
  15. 15.
    George B, Chen S, Chaudhary V, Gonder J, Chakrabarti S (2009) Extracellular matrix proteins in epiretinal membranes and in diabetic retinopathy. Curr Eye Res 34:134–144PubMedCrossRefGoogle Scholar
  16. 16.
    Meyer P, Wunderlich K, Kain HL, Prunte C, Flammer J (2002) Human connective tissue growth factor mRNA expression of epiretinal and subretinal fibrovascular membranes: a report of three cases. Ophthalmologica 216:284–291PubMedCrossRefGoogle Scholar
  17. 17.
    Scheiffarth OF, Kampik A, Gunther H, von der Mark K (1988) Proteins of the extracellular matrix in vitreoretinal membranes. Graefes Arch Clin Exp Ophthalmol 226:357–361PubMedCrossRefGoogle Scholar
  18. 18.
    Ayad S, Weiss JB (1984) A new look at vitreous-humour collagen. Biochem J 218:835–840PubMedGoogle Scholar
  19. 19.
    Bishop PN, Crossman MV, McLeod D, Ayad S (1994) Extraction and characterization of the tissue forms of collagen types II and IX from bovine vitreous. Biochem J 299(Pt 2):497–505PubMedGoogle Scholar
  20. 20.
    Ponsioen TL, van Luyn MJ, van der Worp RJ, Pas HH, Hooymans JM, Los LI (2008) Human retinal Muller cells synthesize collagens of the vitreous and vitreoretinal interface in vitro. Mol Vis 14:652–660PubMedGoogle Scholar
  21. 21.
    Ponsioen TL, van Luyn MJ, van der Worp RJ, van Meurs JC, Hooymans JM, Los LI (2008) Collagen distribution in the human vitreoretinal interface. Invest Ophthalmol Vis Sci 49:4089–4095PubMedCrossRefGoogle Scholar
  22. 22.
    Takanosu M, Boyd TC, Le Goff M, Henry SP, Zhang Y, Bishop PN, Mayne R (2001) Structure, chromosomal location, and tissue-specific expression of the mouse opticin gene. Invest Ophthalmol Vis Sci 42:2202–2210PubMedGoogle Scholar
  23. 23.
    Jerdan JA, Glaser BM (1986) Retinal microvessel extracellular matrix: an immunofluorescent study. Invest Ophthalmol Vis Sci 27:194–203PubMedGoogle Scholar
  24. 24.
    Burke JM, Kower HS (1980) Collagen synthesis by rabbit neural retina in vitro and in vivo. Exp Eye Res 31:213–226PubMedCrossRefGoogle Scholar
  25. 25.
    Campochiaro PA, Jerdon JA, Glaser BM (1986) The extracellular matrix of human retinal pigment epithelial cells in vivo and its synthesis in vitro. Invest Ophthalmol Vis Sci 27:1615–1621PubMedGoogle Scholar
  26. 26.
    He S, Chen Y, Khankan R, Barron E, Burton R, Zhu D, Ryan SJ, Oliver N, Hinton DR (2008) Connective tissue growth factor as a mediator of intraocular fibrosis. Invest Ophthalmol Vis Sci 49:4078–4088PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lee SC, Kwon OW, Seong GJ, Kim SH, Ahn JE, Kay ED (2001) Epitheliomesenchymal transdifferentiation of cultured RPE cells. Ophthalmic Res 33:80–86PubMedCrossRefGoogle Scholar
  28. 28.
    Guidry C, King JL, Mason JO 3rd (2009) Fibrocontractive Muller cell phenotypes in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 50:1929–1939PubMedCrossRefGoogle Scholar
  29. 29.
    Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Muller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41:529–536PubMedGoogle Scholar
  30. 30.
    Mukherjee S, Guidry C (2007) The insulin-like growth factor system modulates retinal pigment epithelial cell tractional force generation. Invest Ophthalmol Vis Sci 48:1892–1899PubMedCrossRefGoogle Scholar
  31. 31.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  32. 32.
    King JL, Guidry C (2004) Muller cell production of insulin-like growth factor-binding proteins in vitro: modulation with phenotype and growth factor stimulation. Invest Ophthalmol Vis Sci 45:4535–4542PubMedCrossRefGoogle Scholar
  33. 33.
    Guidry C (1992) Extracellular matrix contraction by fibroblasts: peptide promoters and second messengers. Cancer Metastasis Rev 11:45–54PubMedCrossRefGoogle Scholar
  34. 34.
    Hardwick C, Feist R, Morris R, White M, Witherspoon D, Angus R, Guidry C (1997) Tractional force generation by porcine Muller cells: stimulation by growth factors in human vitreous. Invest Ophthalmol Vis Sci 38:2053–2063PubMedGoogle Scholar
  35. 35.
    Machemer R, Laqua H (1975) Pigment epithelium proliferation in retinal detachment (massive periretinal proliferation). Am J Opthalmol 80:1–23Google Scholar
  36. 36.
    Machemer R, van Horn D, Aaberg TM (1978) Pigment epithelial proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 85:181–191PubMedGoogle Scholar
  37. 37.
    Mueller-Jensen K, Machemer R, Azarnia R (1975) Autotransplantation of retinal pigment epithelium in intravitreal diffusion chamber. Am J Ophthalmol 80:530–537PubMedGoogle Scholar
  38. 38.
    Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Opthalmol 80:602–618Google Scholar
  39. 39.
    Hiscott PS, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol 69:810–823PubMedCrossRefGoogle Scholar
  40. 40.
    Heidenkummer HP, Kampik A, Petrovski B (1992) Proliferative activity in epiretinal membranes. The use of the monoclonal antibody Ki-67 in proliferative vitreoretinal diseases. Retina 12:52–58PubMedCrossRefGoogle Scholar
  41. 41.
    Abu El-Asrar AM, Struyf S, Van Damme J, Geboes K (2008) Circulating fibrocytes contribute to the myofibroblast population in proliferative vitreoretinopathy epiretinal membranes. Br J Ophthalmol 92:699–704PubMedCrossRefGoogle Scholar
  42. 42.
    Lin ML, Li YP, Li ZR, Lin JX, Zhou XL, Liang D (2011) Macrophages acquire fibroblast characteristics in a rat model of proliferative vitreoretinopathy. Ophthalmic Res 45:180–190PubMedCrossRefGoogle Scholar
  43. 43.
    Mukherjee S, King JL, Guidry C (2009) Phenotype-associated changes in retinal pigment epithelial cell expression of insulin-like growth factor binding proteins. Invest Ophthalmol Vis Sci 50:5449–5455PubMedCrossRefGoogle Scholar
  44. 44.
    Guidry C (1997) Tractional force generation by porcine Muller cells: development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 38:456–468PubMedGoogle Scholar
  45. 45.
    Guidry C (2005) The role of Muller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 24:75–86PubMedCrossRefGoogle Scholar
  46. 46.
    McGillem GS, Guidry C, Dacheux RF (1998) Antigenic changes of rabbit retinal Muller cells in culture. Invest Ophthalmol Vis Sci 39:1453–1461PubMedGoogle Scholar
  47. 47.
    Kritzenberger M, Junglas B, Framme C, Helbig H, Gabel VP, Fuchshofer R, Tamm ER, Hillenkamp J (2011) Different collagen types define two types of idiopathic epiretinal membranes. Histopathology 58:953–965PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Richard M. FeistJr.
    • 1
  • Jeffery L. King
    • 2
  • Robert Morris
    • 3
  • C. Douglas Witherspoon
    • 3
  • Clyde Guidry
    • 3
  1. 1.University of Alabama School of MedicineBirminghamUSA
  2. 2.Department of OphthalmologyUniversity of Alabama School of MedicineBirminghamUSA
  3. 3.University of Alabama School of MedicineBirminghamUSA

Personalised recommendations