Inner retinal layer comparisons of eyes with exudative age-related macular degeneration and eyes with age-related macular degeneration and glaucoma

  • Ulfah RimayantiEmail author
  • Yoshiaki Kiuchi
  • Ken Yamane
  • Miftahul Akhyar Latief
  • Hideki Mochizuki
  • Junko Hirata
  • Tomoyuki Akita
  • Junko Tanaka
Retinal Disorders



The incidence of glaucoma increases with age, as does age-related macular degeneration (AMD), with the reported incidence of glaucoma among AMD subjects being 5.4 %. Optical coherence tomography (OCT) can detect glaucomatous changes in the inner retina with high sensitivity. The purpose of this study was to compare ganglion cell complex (GCC) parameters and the thickness of the peripapillary retinal nerve fiber layer (RNFL) in normal eyes to that observed in eyes with age-related macular degeneration (AMD) and eyes with both AMD and glaucoma.


The GCC components [GCC thickness, focal loss volume (FLV), and global loss volume (GLV)] and peripapillary RNFL thickness were measured using RTVue spectral-domain OCT (SD-OCT). The GCC and RNFL parameters of normal eyes, AMD eyes treated with different types of therapy, and AMD eyes with and without glaucoma were evaluated using nonparametric tests. Univariate and multivariate analyses were used to determine whether the GCC and RNFL parameters could be used to differentiate AMD eyes with glaucoma from those without glaucoma.


Seventy-one normal eyes, 120 eyes with AMD, and 23 eyes with AMD and glaucoma were studied. The values of all GCC components were significantly different in the normal eyes from those observed in the eyes with AMD, except for the RNFL thicknesses. The GCC and RNFL parameters were not significantly different between the eyes receiving different types of therapy among the AMD groups. The RNFL thickness was significantly correlated with glaucoma diagnosis in AMD eyes.


These findings indicate that there is damage to the inner retinal layers in eyes with AMD. The RNFL thickness can be a useful parameter for differentiating eyes with AMD from eyes with both AMD and glaucoma.


Age-related macular degeneration Glaucoma Ganglion cell complex Retinal nerve fiber layer 


Financial disclosure

The authors have no conflicts of interest with regard to this article.


  1. 1.
    Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP (2004) Global data on visual impairment in the year 2002. Bull World Health Organ 82:844–851PubMedCentralPubMedGoogle Scholar
  2. 2.
    Padnick-Silver L, Weinberg AB, Lafranco FP, Macsai MS (2012) Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography. Retina 32:1045–1056PubMedCrossRefGoogle Scholar
  3. 3.
    Uyama M, Takahashi K, Ida N, Miyashiro M, Ando A, Takahashi A, Yamada E, Shirasu J, Nagai Y, Takeuchi M (2000) The second eye of Japanese patients with unilateral exudative age related macular degeneration. Br J Ophthalmol 84:1018–1023PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL III (2007) The relationship between nerve fiber layer and perimetry measurements. Invest Ophthalmol Vis Sci 48:763–773PubMedCrossRefGoogle Scholar
  5. 5.
    Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D (2006) Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci 47:4254–4261PubMedCrossRefGoogle Scholar
  6. 6.
    Klein R, Klein BEK, Tomany SC, Meuer SM, Huang GH (2002) Ten-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 99:933–943CrossRefGoogle Scholar
  7. 7.
    Kreuger DE, Milton RC, Maunder LR (1980) The Framingham eye study: introduction to the monograph. Surv Ophthalmol 24:614–620PubMedCrossRefGoogle Scholar
  8. 8.
    Rohrschneider K, Bültmann S, Springer C (2008) Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res 27:536–548PubMedCrossRefGoogle Scholar
  9. 9.
    Sunness JS, Schuchard RA, Shen N, Rubin GS, Dagnelie G, Haselwood DM (1995) Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. Invest Ophthalmol Vis Sci 36:1863–1874PubMedCentralPubMedGoogle Scholar
  10. 10.
    Dinc UA, Yenerel M, Gorgun E, Oncel M (2008) Assessment of macular function by microperimetry in intermediate age-related macular degeneration. Eur J Ophthalmol 18:595–600PubMedGoogle Scholar
  11. 11.
    Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, Varma R, Huang D (2009) Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology 116:2305–2314PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mecklenburg L, Schraermeyer U (2007) An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol 35:252–267PubMedCrossRefGoogle Scholar
  13. 13.
    Medeiros NE, Curcio CA (2001) Preservations of ganglion cell layer neurons in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:795–803PubMedGoogle Scholar
  14. 14.
    Garner A, Sarks A, Sarks JP (1994) Degenerative and related disorders of the retina and choroid. In: Garner A, Klintworth GK (eds) Pathobiology of ocular disease, 2nd edn. Marcel Dekker, New York, pp 631–674Google Scholar
  15. 15.
    Takahashi K, Ogura Y, Ishibashi T, Shiraga F, Yuzawa M (2012) Treatment guidelines for age-related macular degeneration. Nippon Ganka Gakkai Zasshi 116:1150–1155PubMedGoogle Scholar
  16. 16.
    Gloster J, Parry DG (1974) Use of photographs for measuring cupping in the optic disc. Br J Ophthalmol 58:850–862PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ (2002) The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 86:238–242PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Japan Glaucoma Society (2006) Guidelines for glaucoma, 2nd edn. Japan Glaucoma Society, Tokyo, pp 55–60Google Scholar
  19. 19.
    Na JH, Sung KR, Baek S, Sun JH, Lee Y (2011) Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma? Invest Ophthalmol Vis Sci 52:8094–8101PubMedCrossRefGoogle Scholar
  20. 20.
    Urdan TC (2005) T-Tests. In: Riegert D (ed) Statistics in plain english. Lawrence Erlbaum Associates Inc, Mahwah, pp 90–94Google Scholar
  21. 21.
    Lehman A, O’Rourke N, Hatcher L, Stepanski EJ (2005) Measures of bivariate association. In: JMP for basic univariate and multivariate statistics: A step-by-step guide. SAS Institute Inc., Cary, pp 103–136Google Scholar
  22. 22.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845PubMedCrossRefGoogle Scholar
  23. 23.
    Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, Bandello F, Souied E (2013) Hyperrreflective dots: a new spectral domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229:32–37PubMedCrossRefGoogle Scholar
  24. 24.
    Villegas-Pérez MP, Lawrence JM, Vidal-Sanz M, Lavail MM, Lund RD (1998) Ganglion cell loss in RCS rat retina: a result of compression of axons by contracting intraretinal vessels linked to the pigment epithelium. J Comp Neurol 392:58–77PubMedCrossRefGoogle Scholar
  25. 25.
    Kashiwagi K, Iizuka Y, Tanaka Y, Araie M, Suzuki Y, Tsukahara S (2004) Molecular and cellular reactions of retinal ganglion cells and retinal glial cells under centrifugal force loading. Invest Ophthalmol Vis Sci 45:3778–3786PubMedCrossRefGoogle Scholar
  26. 26.
    Morgan JE (2000) Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye 14:437–444PubMedCrossRefGoogle Scholar
  27. 27.
    Menke MN, Dabov S, Knecht P, Sturm V (2011) Reproducibility of retinal thickness measurements in patients with age-related macular degeneration using 3D Fourier-domain optical coherence tomography (OCT) (Topcon 3D-OCT 100). Acta Ophthalmol 89:346–351PubMedCrossRefGoogle Scholar
  28. 28.
    Blair MP, Gupta M, Blair NP, Shahidi M (2010) Association between retinal thickness and retinal pigment epithelium elevation in age-related macular degeneration. Ophthalmic Surg Lasers Imaging 41:175–181PubMedCrossRefGoogle Scholar
  29. 29.
    Horsley MB, Mandava N, Maycotte MA, Kahook MY (2010) Retinal nerve fiber layer thickness in patients receiving chronic anti-vascular endothelial growth factor therapy. Am J Ophthalmol 150:558–561PubMedCrossRefGoogle Scholar
  30. 30.
    Nishimura T, Machida S, Harada T, Kurosaka D (2012) Retinal ganglion cell function after repeated intravitreal injections of ranibizumab in patients with age-related macular degeneration. Clin Ophthalmol 6:1073–1082PubMedCentralPubMedGoogle Scholar
  31. 31.
    Schmidt-Erfurth U, Laqua H, Schlötzer-Schrehard U, Viestenz A, Naumann GOH (2002) Histopathological changes following photodynamic therapy in human eyes. Arch Ophthalmol 120:835–844PubMedGoogle Scholar
  32. 32.
    Tzekov R, Lin T, Zhang KM, Jackson B, Oyejide A, Orilla W, Kulkarni AD, Kuppermann BD, Wheeler L, Burke J (2006) Ocular changes after photodynamic therapy. Invest Ophthalmol Vis Sci 47:377–385PubMedCrossRefGoogle Scholar
  33. 33.
    Hayashi H, Yamashiro K, Tsujikawa A, Ota M, Otani A, Yoshimura N (2009) Association between foveal photoreceptor integrity and visual outcome in neovascular age-related macular degeneration. Am J Ophthalmol 148:83–89PubMedCrossRefGoogle Scholar
  34. 34.
    Reeves BC, Harding SP, Langham J, Grieve R, Tomlin K, Walker J, Guerriero C, Carpenter J, Patton WP, Muldrew KA, Peto T, Chakravarthy U (2012) Verteporfin photodynamic therapy for neovascular age-related macular degeneration: cohort study for the UK. Health Technol Assess 16(i-xii):1–200Google Scholar
  35. 35.
    Dupont WD (2002) Fixed effects analysis of variance. In: Statistical modelling for biomedical researchers: a simple introduction to the analysis of complex data. Cambridge University Press, Cambridge, pp 320–329Google Scholar
  36. 36.
    Hill T, Lewicki P (2006) Basic statistics and tables. In: Statistics: methods and applications, a comprehensive reference for science, industry, and data mining (1st edition). StatSoft Inc., Tulsa, pp 25–26Google Scholar
  37. 37.
    Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452PubMedCrossRefGoogle Scholar
  38. 38.
    Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K (2011) Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 20:252–259PubMedCrossRefGoogle Scholar
  39. 39.
    Chen HY, Wang TH, Lee YM, Hung TJ (2005) Retinal nerve fiber layer thickness measured by optical coherence tomography and its correlation with visual field defects in early glaucoma. J Formos Med Assoc 104:927–934PubMedGoogle Scholar
  40. 40.
    Pepe MS, Cai T, Longton G (2006) Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics 62:221–229PubMedCrossRefGoogle Scholar
  41. 41.
    Medeiros FA, Sample PA, Zangwill LM, Liebmann JM, Girkin CA, Weinreb RN (2006) A statistical approach to the evaluation of covariate effects on the receiver operating characteristic curves of diagnostic tests in glaucoma. Invest Ophthalmol Vis Sci 47:2520–2527PubMedCrossRefGoogle Scholar
  42. 42.
    Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36PubMedGoogle Scholar
  43. 43.
    Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY (2010) Structure–function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci 51:4646–4651PubMedCrossRefGoogle Scholar
  44. 44.
    Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y (2012) The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma Jun 4 [Epub ahead of print]. doi: 10.1097/IJG.0b013e318259b2e1
  45. 45.
    Tan O, Li G, Lu ATH, Varma R, Huang D (2008) Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Shuttleworth GN, Luhishi EA, Harrad RA (1998) Do patients with age related maculopathy and cataract benefit from cataract surgery? Br J Ophthalmol 82:611–616PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    The CATT Research Group, Martin DF, Maguire MG, Ying G, Grunwald JE, Fine SL, Jaffe GJ (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364:1897–1908PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulfah Rimayanti
    • 1
    Email author
  • Yoshiaki Kiuchi
    • 1
  • Ken Yamane
    • 1
  • Miftahul Akhyar Latief
    • 1
  • Hideki Mochizuki
    • 1
  • Junko Hirata
    • 1
  • Tomoyuki Akita
    • 2
  • Junko Tanaka
    • 2
  1. 1.Department of Ophthalmology and Visual Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan

Personalised recommendations