Segmental reproducibility of retinal blood flow velocity measurements using retinal function imager

  • Jay Chhablani
  • Dirk-Uwe Bartsch
  • Lingyun Cheng
  • Laura Gomez
  • Rayan A. Alshareef
  • Sami S. Rezeq
  • Sunir J. Garg
  • Zvia Burgansky-Eliash
  • William R. Freeman
Retinal Disorders



To evaluate the reproducibility of blood flow velocity measurements of individual retinal blood vessel segments using retinal function imager (RFI).


Eighteen eyes of 15 healthy subjects were enrolled prospectively at three centers. All subjects underwent RFI imaging in two separate sessions 15 min apart by a single experienced photographer at each center. An average of five to seven serial RFI images were obtained. All images were transferred electronically to one center, and were analyzed by a single observer. Multiple blood vessel segments (each shorter than 100 μm) were co-localized on first and second session images taken at different times of the same fundus using built-in software. Velocities of corresponding segments were determined, and then the inter-session reproducibility of flow velocity was assessed by the concordance correlation co-efficient (CCC), coefficient of reproducibility (CR), and coefficient of variance (CV).


Inter-session CCC for flow velocity was 0.97 (95% confidence interval (CI), 0.966 to 0.9797). The CR was 1.49 mm/sec (95% CI, 1.39 to 1.59 mm/sec), and CV was 10.9%. The average arterial blood flow velocity was 3.16 mm/sec, and average venous blood flow velocity was 3.15 mm/sec. The CR for arterial and venous blood flow velocity was 1.61 mm/sec and 1.27 mm/sec respectively.


RFI provides reproducible measurements for retinal blood flow velocity for individual blood vessel segments, with 10.9% variability.


Retinal blood flow Retinal function imager Retinal blood flow velocity 



This study was supported by an Unrestricted Research Fund to Jacobs Retina Center at Shiley Eye Center, University of California, San Diego (LC), NIH-EY 007366 (WRF), NIH EY 020617 (LC), NIH- EY 018589 (WRF), RPB Inc. New York (WRF), NIH-EY 016323 (DUB) and Retina Research Foundation of Wills Eye Institute (SJG).

Financial Disclosures



  1. 1.
    Shoshani Y, Harris A, Shoja MM, Arieli Y, Ehrlich R, Primus S, Ciulla T, Cantor A, Wirostko B, Siesky BA (2012) Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin Experiment Ophthalmol 40:697–705PubMedCrossRefGoogle Scholar
  2. 2.
    Chen HC, Gupta A, Wiek J, Kohner EM (1998) Retinal blood flow in nonischemic central retinal vein occlusion. Ophthalmology 105:772–775PubMedCrossRefGoogle Scholar
  3. 3.
    Williamson TH, Baxter GM (1994) Central retinal vein occlusion, an investigation by color Doppler imaging. Blood velocity characteristics and prediction of iris neovascularization. Ophthalmology 101:1362–1372PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, Egan K, Gragoudas ES (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646PubMedCrossRefGoogle Scholar
  5. 5.
    Deokule S, Vizzeri G, Boehm A, Bowd C, Weinreb RN (2010) Association of visual field severity and parapapillary retinal blood flow in open-angle glaucoma. J Glaucoma 19:293–298PubMedGoogle Scholar
  6. 6.
    Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, Renard JP, Stefansson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393PubMedCrossRefGoogle Scholar
  7. 7.
    Chen CS, Miller NR (2007) Ocular ischemic syndrome: review of clinical presentations, etiology, investigation, and management. Compr Ophthalmol Update 8:17–28PubMedGoogle Scholar
  8. 8.
    Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15:15–29PubMedCrossRefGoogle Scholar
  9. 9.
    Wang L, Fortune B, Cull G, McElwain KM, Cioffi GA (2007) Microspheres method for ocular blood flow measurement in rats: size and dose optimization. Exp Eye Res 84:108–117PubMedCrossRefGoogle Scholar
  10. 10.
    Wang L, Grant C, Fortune B, Cioffi GA (2008) Retinal and choroidal vasoreactivity to altered PaCO2 in rat measured with a modified microsphere technique. Exp Eye Res 86:908–913PubMedCrossRefGoogle Scholar
  11. 11.
    Chemtob S, Beharry K, Rex J, Chatterjee T, Varma DR, Aranda JV (1991) Ibuprofen enhances retinal and choroidal blood flow autoregulation in newborn piglets. Invest Ophthalmol Vis Sci 32:1799–1807PubMedGoogle Scholar
  12. 12.
    Horio N, Horiguchi M (2004) Retinal blood flow analysis using intraoperative video fluorescein angiography combined with optical fiber-free intravitreal surgery system. Am J Ophthalmol 138:1082–1083PubMedCrossRefGoogle Scholar
  13. 13.
    Yang Y, Kim S, Kim J (1997) Fluorescent dots in fluorescein angiography and fluorescein leukocyte angiography using a scanning laser ophthalmoscope in humans. Ophthalmology 104:1670–1676PubMedCrossRefGoogle Scholar
  14. 14.
    Yang Y, Kim S, Kim J (1997) Visualization of retinal and choroidal blood flow with fluorescein leukocyte angiography in rabbits. Graefes Arch Clin Exp Ophthalmol 235:27–31PubMedCrossRefGoogle Scholar
  15. 15.
    Yang Y, Moon S, Lee S, Kim J (1996) Measurement of retinal blood flow with fluorescein leucocyte angiography using a scanning laser ophthalmoscope in rabbits. Br J Ophthalmol 80:475–479PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Dimitrova G, Kato S (2010) Color Doppler imaging of retinal diseases. Surv Ophthalmol 55:193–214PubMedCrossRefGoogle Scholar
  17. 17.
    Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, Friedman S, Kagemann L, Garzozi HJ (2003) An update on retinal circulation assessment technologies. Curr Eye Res 27:329–343PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Y, Lu A, Gil-Flamer J, Tan O, Izatt JA, Huang D (2009) Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br J Ophthalmol 93:634–637PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Jonescu-Cuypers CP, Harris A, Wilson R, Kagemann L, Mavroudis LV, Topouzis F, Coleman AL (2004) Reproducibility of the Heidelberg retinal flowmeter in determining low perfusion areas in peripapillary retina. Br J Ophthalmol 88:1266–1269PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Yoshida A, Feke GT, Mori F, Nagaoka T, Fujio N, Ogasawara H, Konno S, McMeel JW (2003) Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol 135:356–361PubMedCrossRefGoogle Scholar
  21. 21.
    Nagahara M, Tamaki Y, Tomidokoro A, Araie M (2011) In vivo measurement of blood velocity in human major retinal vessels using the laser speckle method. Invest Ophthalmol Vis Sci 52:87–92PubMedCrossRefGoogle Scholar
  22. 22.
    Kagemann L, Wollstein G, Ishikawa H, Townsend KA, Schuman JS (2009) Validation of spectral domain optical coherence tomographic Doppler shifts using an in vitro flow model. Invest Ophthalmol Vis Sci 50:702–706PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Burgansky-Eliash Z, Nelson DA, Bar-Tal OP, Lowenstein A, Grinvald A, Barak A (2010) Reduced retinal blood flow velocity in diabetic retinopathy. Retina 30:765–773PubMedCrossRefGoogle Scholar
  24. 24.
    Birger Y, Blumenfeld O, Bartov E, Burgansky-Eliash Z (2011) Reduced retinal blood flow velocity in severe hyperlipidemia measured by the retinal function imager. Graefes Arch Clin Exp Ophthalmol 249:1587–1590PubMedCrossRefGoogle Scholar
  25. 25.
    Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Krastel H, Jonas JB (2011) Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 249:1855–1858PubMedCrossRefGoogle Scholar
  26. 26.
    Beutelspacher SC, Serbecic N, Barash H, Burgansky-Eliash Z, Grinvald A, Jonas JB (2011) Central serous chorioretinopathy shows reduced retinal flow circulation in retinal function imaging (RFI). Acta Ophthalmol 89:e479–e482PubMedCrossRefGoogle Scholar
  27. 27.
    Barak A, Burgansky-Eliash Z, Barash H, Nelson DA, Grinvald A, Loewenstein A (2012) The effect of intravitreal bevacizumab (Avastin) injection on retinal blood flow velocity in patients with choroidal neovascularization. Eur J Ophthalmol 22:423–430PubMedCrossRefGoogle Scholar
  28. 28.
    Landa G, Rosen RB (2010) New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). Br J Ophthalmol 94:54–58PubMedCrossRefGoogle Scholar
  29. 29.
    Landa G, Jangi AA, Garcia PM, Rosen RB (2012) Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol 32:211–215PubMedCrossRefGoogle Scholar
  30. 30.
    Nelson DA, Krupsky S, Pollack A, Aloni E, Belkin M, Vanzetta I, Rosner M, Grinvald A (2005) Special report: Noninvasive multi-parameter functional optical imaging of the eye. Ophthalmic Surg Lasers Imaging 36:57–66PubMedGoogle Scholar
  31. 31.
    Joos KM, Pillunat LE, Knighton RW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216PubMedGoogle Scholar
  32. 32.
    Delori FC, Webb RH, Sliney DH (2007) Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A Opt Image Sci Vis 24:1250–1265PubMedCrossRefGoogle Scholar
  33. 33.
    Nicolela MT, Hnik P, Schulzer M, Drance SM (1997) Reproducibility of retinal and optic nerve head blood flow measurements with scanning laser Doppler flowmetry. J Glaucoma 6:157–164PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jay Chhablani
    • 1
    • 4
  • Dirk-Uwe Bartsch
    • 1
  • Lingyun Cheng
    • 1
  • Laura Gomez
    • 1
  • Rayan A. Alshareef
    • 2
  • Sami S. Rezeq
    • 2
  • Sunir J. Garg
    • 2
  • Zvia Burgansky-Eliash
    • 3
  • William R. Freeman
    • 1
  1. 1.Jacobs Retina Center at Shiley Eye CenterUniversity of California, San DiegoLa JollaUSA
  2. 2.The Retina Service, Wills Eye Institute and Thomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Department of Ophthalmology, The Edith Wolfson Medical Center, Holon, Israel, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  4. 4.L V Prasad Eye InstituteHyderabadIndia

Personalised recommendations