Factor Xa and thrombin stimulate proinflammatory and profibrotic mediator production by retinal pigment epithelial cells: a role in vitreoretinal disorders?

  • Jeroen Bastiaans
  • Jan C. van Meurs
  • Conny van Holten-Neelen
  • Marja Smits-te Nijenhuis
  • Marion J. Kolijn-Couwenberg
  • P. Martin van Hagen
  • Robert W. A. M. Kuijpers
  • Herbert Hooijkaas
  • Willem A. Dik
Basic Science



Vitreoretinal disorders, including proliferative vitreoretinopathy (PVR), proliferative diabetic retinopathy (PDR) and exudative age-related macular degeneration (AMD), are a major cause of visual impairment worldwide and can lead to blindness when untreated. Loss of blood-retinal barrier (BRB) integrity associated with vitreoretinal fibrin deposition, inflammation, fibrosis and neovascularization contribute to the pathophysiological processes in these disorders. Retinal pigment epithelial (RPE) cells are well recognized to contribute to vitreoretinal inflammation/fibrosis and are likely to encounter contact with coagulation factor upon loss of BRB integrity.


An extensive study was performed in which we examined the effect of factor Xa and thrombin on the production of a broad panel of cytokines/chemokines and growth factors by RPE cells. For this purpose we used the ARPE-19 cell line as well as primary RPE cells, a glass slide based array that allows simultaneous detection of 120 cytokines/chemokines and growth factors, ELISA and real-time-quantitative PCR. The involved signaling cascade was examined using specific inhibitors for protease activated receptor (PAR)1, PAR2 and nuclear factor kappa-B (NF-κB).


Factor Xa and thrombin regulated the production of cytokines and growth factors (including GM-CSF, IL-6, IL-8, MCP-3, PDGF-AA, PDGF-BB, TIMP-1 and TGF-α) that fit well in the pathobiology of vitreoretinal disease. Blocking studies revealed that the effects were mediated via PAR1 induced NF-κB activation.


Our findings suggest that factor Xa and thrombin can drive vitreoretinal inflammation and fibrosis and should be considered as treatment targets in vitreoretinal disorders such as PVR, PDR and AMD.


Factor Xa Thrombin Retinal pigment epithelium Vitreoretinal fibrotic disorders Cytokine antibody array Inflammation Fibrosis 

Supplementary material

417_2013_2335_MOESM1_ESM.doc (248 kb)
ESM 1(DOC 248 kb)


  1. 1.
    Friedlander M (2007) Fibrosis and diseases of the eye. J Clin Invest 117(3):576–586PubMedCrossRefGoogle Scholar
  2. 2.
    Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43(1):3–18PubMedCrossRefGoogle Scholar
  3. 3.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881PubMedCrossRefGoogle Scholar
  4. 4.
    Pastor JC, de la Rua ER, Martin F (2002) Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res 21(1):127–144PubMedCrossRefGoogle Scholar
  5. 5.
    Ricker LJ, Dieri RA, Beckers GJ, Pels E, Liem AT, Hendrikse F, Kijlstra A, Hemker HC, La Heij EC (2010) High subretinal fluid procoagulant activity in rhegmatogenous retinal detachment. Invest Ophthalmol Vis Sci 51(10):5234–5249PubMedCrossRefGoogle Scholar
  6. 6.
    Weber DS, Griendling KK (2004) Thrombin: beyond coagulation. J Mol Cell Cardiol 36(1):13–15PubMedCrossRefGoogle Scholar
  7. 7.
    Dik WA, Zimmermann LJ, Naber BA, Janssen DJ, van Kaam AH, Versnel MA (2003) Thrombin contributes to bronchoalveolar lavage fluid mitogenicity in lung disease of the premature infant. Pediatr Pulmonol 35(1):34–41PubMedCrossRefGoogle Scholar
  8. 8.
    Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130(3):248–282PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshida A, Elner SG, Bian ZM, Kunkel SL, Lukacs NW, Elner VM (2001) Thrombin regulates chemokine induction during human retinal pigment epithelial cell/monocyte interaction. Am J Pathol 159(3):1171–1180PubMedCrossRefGoogle Scholar
  10. 10.
    Hollborn M, Petto C, Steffen A, Trettner S, Bendig A, Wiedemann P, Bringmann A, Kohen L (2009) Effects of thrombin on RPE cells are mediated by transactivation of growth factor receptors. Invest Ophthalmol Vis Sci 50(9):4452–4459PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshida M, Tanihara H, Yoshimura N (1992) Platelet-derived growth factor gene expression in cultured human retinal pigment epithelial cells. Biochem Biophys Res Commun 189(1):66–71PubMedCrossRefGoogle Scholar
  12. 12.
    Hollborn M, Kohen L, Werschnik C, Tietz L, Wiedemann P, Bringmann A (2012) Activated blood coagulation Factor X (FXa) induces angiogenic growth factor expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 53(9):5930–5939PubMedCrossRefGoogle Scholar
  13. 13.
    Milikan JC, Baarsma GS, Kuijpers RWAM, Osterhaus ADME, Verjans GM (2009) Human ocular-derived virus-specific CD4+ T cells control varicella zoster virus replication in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50(2):743–751PubMedCrossRefGoogle Scholar
  14. 14.
    Dik WA, Nadel B, Przybylski GK, Asnafi V, Grabarczyk P, Navarro JM, Verhaaf B, Schmidt CA, Macintyre EA, van Dongen JJM, Langerak AW (2007) Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. Blood 110(1):388–392PubMedCrossRefGoogle Scholar
  15. 15.
    Li H, Wang H, Wang F, Gu Q, Xu X (2011) Snail involves in the transforming growth factor beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One 6(8):e23322PubMedCrossRefGoogle Scholar
  16. 16.
    Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866PubMedCrossRefGoogle Scholar
  17. 17.
    Hirano T (1998) Interleukin 6 and its receptor: ten years later. Int Rev Immunol 16(3–4):249–284PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi Y (2008) The role of chemokines in neutrophil biology. Front Biosci 13:2400–2407PubMedCrossRefGoogle Scholar
  19. 19.
    Shen F, Gaffen SL (2008) Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41(2):92–104PubMedCrossRefGoogle Scholar
  20. 20.
    Bonacchi A, Romagnani P, Romanelli RG, Efsen E, Annunziato F, Lasagni L, Francalanci M, Serio M, Laffi G, Pinzani M, Gentilini P, Marra F (2001) Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276(13):9945–9954PubMedCrossRefGoogle Scholar
  21. 21.
    Proost P, Wuyts A, van Damme J (1996) Human monocyte chemotactic proteins-2 and −3: structural and functional comparison with MCP-1. J Leukoc Biol 59(1):67–74PubMedGoogle Scholar
  22. 22.
    Kakehashi A, Inoda S, Mameuda C, Kuroki M, Jono T, Nagai R, Horiuchi S, Kawakami M, Kanazawa Y (2008) Relationship among VEGF, VEGF receptor, AGEs, and macrophages in proliferative diabetic retinopathy. Diabetes Res Clin Pract 79(3):438–445PubMedCrossRefGoogle Scholar
  23. 23.
    Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I (2012) Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 53(9):5292–5300PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang W, Tan J, Liu Y, Li W, Gao Q, Lehmann PV (2012) Assessment of the innate and adaptive immune system in proliferative vitreoretinopathy. Eye (Lond) 26(6):872–881CrossRefGoogle Scholar
  25. 25.
    Jonas JB, Tao Y, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 90(5):381–388CrossRefGoogle Scholar
  26. 26.
    Kauffmann DJ, van Meurs JC, Mertens DA, Peperkamp E, Master C, Gerritsen ME (1994) Cytokines in vitreous humor: interleukin-6 is elevated in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 35(3):900–906PubMedGoogle Scholar
  27. 27.
    Schoenberger SD, Kim SJ, Sheng J, Rezaei KA, Lalezary M, Cherney E (2012) Increased Prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest Ophthalmol Vis Sci 53(9):5906–5911PubMedCrossRefGoogle Scholar
  28. 28.
    van den Berg JW, van der Zee M, de Bruin RW, van Holten-Neelen C, Bastiaans J, Nagtzaam NM, Ijzermans JN, Benner R, Dik WA (2011) Mild versus strong anti-inflammatory therapy during early sepsis in mice: a matter of life and death. Crit Care Med 39(6):1275–1281PubMedCrossRefGoogle Scholar
  29. 29.
    Ferrari-Lacraz S, Ferrari S (2011) Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 22(2):435–446PubMedCrossRefGoogle Scholar
  30. 30.
    Holtmann MH, Schutz M, Galle PR, Neurath MF (2002) Functional relevance of soluble TNF-alpha, transmembrane TNF-alpha and TNF-signal transduction in gastrointestinal diseases with special reference to inflammatory bowel diseases. Z Gastroenterol 40(8):587–600PubMedCrossRefGoogle Scholar
  31. 31.
    Wilhelm C, Turner JE, van Snick J, Stockinger B (2012) The many lives of IL-9: a question of survival? Nat Immunol 13(7):637–641PubMedCrossRefGoogle Scholar
  32. 32.
    Dik WA (2012) Acute lung injury: can the fibrocyte of today turn into the fibroguide of the future? Crit Care Med 40(1):300–301PubMedCrossRefGoogle Scholar
  33. 33.
    Dik WA, de Krijger RR, Bonekamp L, Naber BA, Zimmermann LJ, Versnel MA (2001) Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and −2 in different phases of bronchopulmonary dysplasia. Pediatr Res 50(6):761–766PubMedCrossRefGoogle Scholar
  34. 34.
    Symeonidis C, Papakonstantinou E, Souliou E, Karakiulakis G, Dimitrakos SA, Diza E (2011) Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol 89(4):339–345PubMedCrossRefGoogle Scholar
  35. 35.
    van Steensel L, Hooijkaas H, Paridaens D, van den Bosch WA, Kuijpers RWAM, Drexhage HA, van Hagen PM, Dik WA (2012) PDGF enhances orbital fibroblast responses to TSHR stimulating autoantibodies in graves’ ophthalmopathy patients. J Clin Endocrinol Metab 97(6):944–953CrossRefGoogle Scholar
  36. 36.
    Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR, Rosenbaum JT (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest Ophthalmol Vis Sci 35(10):3649–3663PubMedGoogle Scholar
  37. 37.
    Cui J, Lei H, Samad A, Basavanthappa S, Maberley D, Matsubara J, Kazlauskas A (2009) PDGF receptors are activated in human epiretinal membranes. Exp Eye Res 88(3):438–444PubMedCrossRefGoogle Scholar
  38. 38.
    Cui JZ, Chiu A, Maberly D, Ma P, Samad A, Matsubara JA (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye (Lond) 21(2):200–208CrossRefGoogle Scholar
  39. 39.
    Zheng Y, Ikuno Y, Ohj M, Kusaka S, Jiang R, Cekic O, Sawa M, Tano Y (2003) Platelet-derived growth factor receptor kinase inhibitor AG1295 and inhibition of experimental proliferative vitreoretinopathy. Jpn J Ophthalmol 47(2):158–165PubMedCrossRefGoogle Scholar
  40. 40.
    Bochaton-Piallat ML, Kapetanios AD, Donati G, Redard M, Gabbiani G, Pournaras CJ (2000) TGF-beta1, TGF-beta receptor II and ED-A fibronectin expression in myofibroblast of vitreoretinopathy. Invest Ophthalmol Vis Sci 41(8):2336–2342PubMedGoogle Scholar
  41. 41.
    Meurer SK, Esser M, Tihaa L, Weiskirchen R (2012) BMP-7/TGF-beta1 signalling in myoblasts: components involved in signalling and BMP-7-dependent blockage of TGF-beta-mediated CTGF expression. Eur J Cell Biol 91(6–7):450–463PubMedCrossRefGoogle Scholar
  42. 42.
    Todaro GJ, Fryling C, De Larco JE (1980) Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 77(9):5258–5262PubMedCrossRefGoogle Scholar
  43. 43.
    Madtes DK, Busby HK, Strandjord TP, Clark JG (1994) Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am J Respir Cell Mol Biol 11(5):540–551PubMedCrossRefGoogle Scholar
  44. 44.
    Beyer C, Distler JH (2012) Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2012.06.008 Google Scholar
  45. 45.
    Mukherjee S, Guidry C (2007) The insulin-like growth factor system modulates retinal pigment epithelial cell tractional force generation. Invest Ophthalmol Vis Sci 48(4):1892–1899PubMedCrossRefGoogle Scholar
  46. 46.
    Grant MB, Guay C, Marsh R (1990) Insulin-like growth factor I stimulates proliferation, migration, and plasminogen activator release by human retinal pigment epithelial cells. Curr Eye Res 9(4):323–335PubMedCrossRefGoogle Scholar
  47. 47.
    Gillery P, Leperre A, Maquart FX, Borel JP (1992) Insulin-like growth factor-I (IGF-I) stimulates protein synthesis and collagen gene expression in monolayer and lattice cultures of fibroblasts. J Cell Physiol 152(2):389–396PubMedCrossRefGoogle Scholar
  48. 48.
    Smith TJ (2010) Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 62(2):199–236PubMedCrossRefGoogle Scholar
  49. 49.
    King JL, Guidry C (2012) Vitreous IGFBP-3 effects on muller cell proliferation and tractional force generation. Invest Ophthalmol Vis Sci 53(1):93–99PubMedCrossRefGoogle Scholar
  50. 50.
    Ruan W, Ying K (2010) Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis? Pathol Res Pract 206(8):537–43PubMedCrossRefGoogle Scholar
  51. 51.
    Ayala A, Warejcka DJ, Olague-Marchan M, Twining SS (2007) Corneal activation of prothrombin to form thrombin, independent of vascular injury. Invest Ophthalmol Vis Sci 48(1):134–143PubMedCrossRefGoogle Scholar
  52. 52.
    Hoang CD, Zhang X, Scott PD, Guillaume TJ, Maddaus MA, Yee D, Kratze RA (2004) Selective activation of insulin receptor substrate-1 and −2 in pleural mesothelioma cells: association with distinct malignant phenotypes. Cancer Res 64(20):7479–7485PubMedCrossRefGoogle Scholar
  53. 53.
    van Steensel L, Paridaens D, van Meurs M, van Hagen PM, van den Bosch WA, Kuijpers RWAM, Drexhage HA, Hooijkaas H, Dik WA (2012) Orbit-infiltrating mast cells, monocytes, and macrophages produce PDGF isoforms that orchestrate orbital fibroblast activation in Graves’ ophthalmopathy. J Clin Endocrinol Metab 97(3):E400–408PubMedCrossRefGoogle Scholar
  54. 54.
    van Steensel L, Paridaens D, Schrijver B, Dingjan GM, van Daele PLA, van Hagen PM, van de Bosch WA, Drexhage HA, Hooijkaas H, Dik WA (2009) Imatinib mesylate and AMN107 inhibit PDGF-signaling in orbital fibroblasts: a potential treatment for Graves’ ophthalmopathy. Invest Ophthalmol Vis Sci 50(7):3091–3098PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jeroen Bastiaans
    • 1
    • 2
  • Jan C. van Meurs
    • 1
    • 4
  • Conny van Holten-Neelen
    • 2
  • Marja Smits-te Nijenhuis
    • 2
  • Marion J. Kolijn-Couwenberg
    • 2
  • P. Martin van Hagen
    • 2
    • 3
  • Robert W. A. M. Kuijpers
    • 4
  • Herbert Hooijkaas
    • 2
  • Willem A. Dik
    • 2
  1. 1.The Rotterdam Eye HospitalRotterdamThe Netherlands
  2. 2.Department of ImmunologyErasmus MCRotterdamThe Netherlands
  3. 3.Department of Internal MedicineErasmus MCRotterdamThe Netherlands
  4. 4.Department of OphthalmologyErasmus MCRotterdamThe Netherlands

Personalised recommendations