Advertisement

Effects of crystallin-β-b2 on stressed RPE in vitro and in vivo

  • Michael R. R. BöhmEmail author
  • Harutyun Melkonyan
  • Patrick Oellers
  • Solon Thanos
Basic Science

Abstract

Background

Crystallins are thought to play a cytoprotective role in conditions of cellular stress. The aim of this study was to determine the effects of crystallin-β-b2 (cryβ-b2) and crystallin-β-b3 (cryβ-b3) on ARPE-19 cells in vitro and on the retinal pigment epithelium (RPE) in vivo.

Methods

The influence of cryβ-b2 and cryβ-b3 on the viability, proliferation and dying of ARPE-19 was measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay, bromo-2-deoxyuridine assay and life/death assay. The expressions of cryβ-b2, cryβ-b3, glial-derived neurotrophic factor (GDNF), and galectin-3 (Gal-3) in ARPE-19 cells were evaluated using immunohistochemistry (IHC), Western blotting (WB) and real-time-quantitative-PCR (qRT-PCR). To evaluate the response of cryβ-b2 and cryβ-b3 to stressed ARPE-19 cells, the cells were exposed to UV-light. In a rat model, cryβ-b2-expressing neural progenitor cells (cryβ-b2-NPCs) were injected intravitreally after retinal stress induced by optic nerve axotomy to examine whether they influence the RPE. Protein expression was examined 2 and 4 weeks postsurgery using IHC and WB.

Results

Detectable alterations of GDNF, and Gal-3 were found in ARPE-19 cells upon exposure to UV light. Adding the crystallins to the medium promoted proliferation and increased viability of ARPE-19 cells in vitro. The obtained data support the view that these crystallins possess epithelioprotective properties. Likewise, in vivo, intravitreally injected cryβ-b2 and transplanted cryβ-b2-NPCs protected RPE from indirectly induced stress.

Conclusions

The data suggest that the RPE response to retinal ganglion cell denegeration is mediated via crystallins, which may thus be used therapeutically.

Keywords

Retinal pigment epithelium Crystallins GDNF Galectin-3 Embryonic NPCs 

Notes

Acknowledgments

The authors thank M. Wissing and M. Langkamp-Flock for their skillful technical assistance, and M. Reis for typing the manuscript. The work was supported by a DFG grant to S.T. (Th 386/18) and by IZKF grants to M.R.R.B. and S.T. The authors thank English Science Editing (ESE) for native linguistic editing of the manuscript.

References

  1. 1.
    Boehm MR, Oellers P, Thanos S (2011) Inflammation and immunology of the vitreoretinal compartment. Inflamm Allergy Drug Targets 10:283–309PubMedCrossRefGoogle Scholar
  2. 2.
    Charteris DG (1995) Proliferative vitreoretinopathy: pathobiology, surgical management, and adjunctive treatment. Br J Ophthalmol 79:953–960PubMedCrossRefGoogle Scholar
  3. 3.
    Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE–Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732PubMedCrossRefGoogle Scholar
  4. 4.
    Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58:353–363PubMedGoogle Scholar
  5. 5.
    Xu G, Li W, Tso A (1998) Apoptosis in age-related macular degeneration. Zhonghua Yan Ke Za Zhi 34:59–61PubMedGoogle Scholar
  6. 6.
    Wong CG, Lin NG (1989) Induction of stress proteins in cultured human RPE-derived cells. Curr Eye Res 8:537–545PubMedCrossRefGoogle Scholar
  7. 7.
    Fort PE, Lampi KJ (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 92:98–103PubMedCrossRefGoogle Scholar
  8. 8.
    Yoshimura N, Kikuchi T, Kuroiwa S, Gaun S (2003) Differential temporal and spatial expression of immediate early genes in retinal neurons after ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 44:2211–2220PubMedCrossRefGoogle Scholar
  9. 9.
    Sakaguchi H, Miyagi M, Darrow RM, Crabb JS, Hollyfield JG, Organisciak DT, Crabb JW (2003) Intense light exposure changes the crystallin content in retina. Exp Eye Res 76:131–133PubMedCrossRefGoogle Scholar
  10. 10.
    Vázquez-Chona F, Song BK, Geisert EE Jr (2004) Temporal changes in gene expression after injury in the rat retina. Invest Ophthalmol Vis Sci 45:2737–2746PubMedCrossRefGoogle Scholar
  11. 11.
    Kumar PA, Haseeb A, Suryanarayana P, Ehtesham NZ, Reddy GB (2005) Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Arch Biochem Biophys 444:77–83PubMedCrossRefGoogle Scholar
  12. 12.
    Sax CM, Piatigorsky J (1994) Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv Enzymol Relat Areas Mol Biol 69:155–201PubMedGoogle Scholar
  13. 13.
    Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol 36:435–499PubMedCrossRefGoogle Scholar
  14. 14.
    Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K, Yoshikawa Y, Tanaka Y, Iwata T (2005) Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J 19:1683–1685PubMedGoogle Scholar
  15. 15.
    Vanita SV, Reis A, Jung M, Singh D, Sperling K, Singh JR, Bürger J (2001) A unique form of autosomal dominant cataract explained by gene conversion between beta-crystallin B2 and its pseudogene. J Med Genet 38:392–396PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang C, Gehlbach P, Gongora C, Cano M, Fariss R, Hose S, Nath A, Green WR, Goldberg MF, Zigler JS Jr, Sinha D (2005) A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Dev Dyn 234:36–47PubMedCrossRefGoogle Scholar
  17. 17.
    Jones SE, Jomary C, Grist J, Makwana J, Neal MJ (1999) Retinal expression of gamma-crystallins in the mouse. Invest Ophthalmol Vis Sci 40:3017–3020PubMedGoogle Scholar
  18. 18.
    Fischer D, Hauk TG, Müller A, Thanos S (2008) Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci 37:471–479PubMedCrossRefGoogle Scholar
  19. 19.
    Alge CS, Priglinger SG, Neubauer AS, Kampik A, Zillig M, Bloemendal H, Welge-Lussen U (2002) Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin. Invest Ophthalmol Vis Sci 43:3575–3582PubMedGoogle Scholar
  20. 20.
    Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26:78–98PubMedCrossRefGoogle Scholar
  21. 21.
    Richard I, Ader M, Sytnyk V, Dityatev A, Richard G, Schachner M, Bartsch U (2005) Electroporation-based gene transfer for efficient transfection of neural precursor cells. Brain Res Mol Brain Res 138:182–190PubMedCrossRefGoogle Scholar
  22. 22.
    Liedtke T, Schwamborn JC, Schröer U, Thanos S (2007) Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics 6:895–907PubMedCrossRefGoogle Scholar
  23. 23.
    Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374PubMedGoogle Scholar
  24. 24.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881PubMedCrossRefGoogle Scholar
  25. 25.
    Strömberg I, Björklund L, Johansson M, Tomac A, Collins F, Olson L, Hoffer B, Humpel C (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124:401–412PubMedCrossRefGoogle Scholar
  26. 26.
    Klöcker N, Bräunling F, Isenmann S, Bähr M (1997) In vivo neurotrophic effects of GDNF on axotomized retinal ganglion cells. Neuroreport 8:3439–3442PubMedCrossRefGoogle Scholar
  27. 27.
    Thanos C, Emerich D (2005) Delivery of neurotrophic factors and therapeutic proteins for retinal diseases. Expert Opin Biol Ther 5:1443–1452PubMedCrossRefGoogle Scholar
  28. 28.
    Frasson M, Picaud S, Léveillard T, Simonutti M, Mohand-Said S, Dreyfus H, Hicks D, Sabel J (1999) Glial cell line-derived neurotrophic factor induces histologic and functional protection of rod photoreceptors in the rd/rd mouse. Invest Ophthalmol Vis Sci 40:2724–2734PubMedGoogle Scholar
  29. 29.
    Alge-Priglinger CS, André S, Schoeffl H, Kampik A, Strauss RW, Kernt M, Gabius HJ, Priglinger SG (2011) Negative regulation of RPE cell attachment by carbohydrate-dependent cell surface binding of galectin-3 and inhibition of the ERK-MAPK pathway. Biochimie 93:477–488PubMedCrossRefGoogle Scholar
  30. 30.
    Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273PubMedCrossRefGoogle Scholar
  31. 31.
    Shalom-Feuerstein R, Cooks T, Raz A, Kloog Y (2005) Galectin-3 regulates a molecular switch from N-Ras to K-Ras usage in human breast carcinoma cells. Cancer Res 65:7292–7300PubMedCrossRefGoogle Scholar
  32. 32.
    Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17PubMedCrossRefGoogle Scholar
  33. 33.
    Kim J, Moon C, Ahn M, Joo HG, Jin JK, Shin T (2009) Immunohistochemical localization of galectin-3 in the pig retina during postnatal development. Mol Vis 15:1971–1976PubMedGoogle Scholar
  34. 34.
    Camby I, Belot N, Rorive S, Lefranc F, Maurage CA, Lahm H, Kaltner H, Hadari Y, Ruchoux MM, Brotchi J, Zick Y, Salmon I, Gabius HJ, Kiss R (2001) Galectins are differentially expressed in supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas, and significantly modulate tumor astrocyte migration. Brain Pathol 11:12–26PubMedCrossRefGoogle Scholar
  35. 35.
    Uehara F, Ohba N, Ozawa M (2001) Isolation and characterization of galectins in the mammalian retina. Invest Ophthalmol Vis Sci 42:2164–2172PubMedGoogle Scholar
  36. 36.
    An E, Lu X, Flippin J, Devaney JM, Halligan B, Hoffman EP, Strunnikova N, Csaky K, Hathout Y (2006) Secreted proteome profiling in human RPE cell cultures derived from donors with age related macular degeneration and age matched healthy donors. J Proteome Res 5:2599–2610PubMedCrossRefGoogle Scholar
  37. 37.
    Pugliese G, Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Lenti L, Sale P, Gradini R, Liu FT, Di Mario U (2000) The diabetic milieu modulates the advanced glycation end product-receptor complex in the mesangium by inducing or upregulating galectin-3 expression. Diabetes 49:1249–1257PubMedCrossRefGoogle Scholar
  38. 38.
    Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U (2001) Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 15:2471–2479PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu W, Sano H, Nagai R, Fukuhara K, Miyazaki A, Horiuchi S (2001) The role of galectin-3 in endocytosis of advanced glycation end products and modified low density lipoproteins. Biochem Biophys Res Commun 280:1183–1188PubMedCrossRefGoogle Scholar
  40. 40.
    Yamagishi S, Yonekura H, Yamamoto Y, Katsuno K, Sato F, Mita I, Ooka H, Satozawa N, Kawakami T, Nomura M, Yamamoto H (1997) Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J Biol Chem 272:8723–8730PubMedCrossRefGoogle Scholar
  41. 41.
    Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101:1219–1224PubMedCrossRefGoogle Scholar
  42. 42.
    Stitt AW, Bhaduri T, McMullen CB, Gardiner TA, Archer DB (2000) Advanced glycation end products induce blood-retinal barrier dysfunction in normoglycemic rats. Mol Cell Biol Res Commun 3:380–388PubMedCrossRefGoogle Scholar
  43. 43.
    McFarlane S, Glenn JV, Lichanska AM, Simpson DA, Stitt AW (2005) Characterisation of the advanced glycation endproduct receptor complex in the retinal pigment epithelium. Br J Ophthalmol 89:107–112PubMedCrossRefGoogle Scholar
  44. 44.
    Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2006) The proteome of central and peripheral retina with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:2280–2290PubMedCrossRefGoogle Scholar
  45. 45.
    Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:815–822PubMedCrossRefGoogle Scholar
  46. 46.
    Xi J, Farjo R, Yoshida S, Kern TS, Swaroop A, Andley UP (2003) A comprehensive analysis of the expression of crystallins in mouse retina. Mol Vis 9:410–419PubMedGoogle Scholar
  47. 47.
    Lee H, Chung H, Lee SH, Jahng WJ (2011) Light-induced phosphorylation of crystallins in the retinal pigment epithelium. Int J Biol Macromol 48:194–201PubMedCrossRefGoogle Scholar
  48. 48.
    Organisciak D, Darrow R, Gu X, Barsalou L, Crabb JW (2006) Genetic, age and light mediated effects on crystallin protein expression in the retina. Photochem Photobiol 82:1088–1096PubMedCrossRefGoogle Scholar
  49. 49.
    Piri N, Song M, Kwong JM, Caprioli J (2007) Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration. Brain Res 1141:1–9PubMedCrossRefGoogle Scholar
  50. 50.
    Fort PE, Freeman WM, Losiewicz MK, Singh RS, Gardner TW (2009) The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin. Mol Cell Proteomics 8:767–779PubMedCrossRefGoogle Scholar
  51. 51.
    Enzmann V, Howard RM, Yamauchi Y, Whittemore SR, Kaplan HJ (2003) Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinal space. Invest Ophthalmol Vis Sci 44:5417–5422PubMedCrossRefGoogle Scholar
  52. 52.
    Li Y, Atmaca-Sonmez P, Schanie CL, Ildstad ST, Kaplan HJ, Enzmann V (2007) Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Invest Ophthalmol Vis Sci 48:4321–4327PubMedCrossRefGoogle Scholar
  53. 53.
    Qiu G, Seiler MJ, Thomas BB, Wu K, Radosevich M, Sadda SR (2007) Revisiting nestin expression in retinal progenitor cells in vitro and after transplantation in vivo. Exp Eye Res 84:1047–1059PubMedCrossRefGoogle Scholar
  54. 54.
    Luthert PJ, Chong NH (1998) Photoreceptor rescue. Eye 12:591–596PubMedCrossRefGoogle Scholar
  55. 55.
    Jelsma TN, Aguayo AJ (1994) Trophic factors. Curr Opin Neurobiol 4:717–725PubMedCrossRefGoogle Scholar
  56. 56.
    Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768PubMedCrossRefGoogle Scholar
  57. 57.
    Huang W, Fileta JB, Dobberfuhl A, Filippopolous T, Guo Y, Kwon G, Grosskreutz CL (2005) Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc Natl Acad Sci U S A 102:12242–12247PubMedCrossRefGoogle Scholar
  58. 58.
    Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852PubMedCrossRefGoogle Scholar
  59. 59.
    Hauk TG, Müller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Michael R. R. Böhm
    • 1
    • 2
    Email author
  • Harutyun Melkonyan
    • 1
  • Patrick Oellers
    • 1
  • Solon Thanos
    • 1
    • 2
  1. 1.Institute of Experimental Ophthalmology, School of MedicineWestfalian Wilhelms-University MünsterMünsterGermany
  2. 2.Interdisciplinary Centre for Clinical Research (IZKF), School of MedicineWestfalian Wilhelms-University MünsterMünsterGermany

Personalised recommendations