Retrobulbar vasculature using 7-T magnetic resonance imaging with dedicated eye surface coil

  • John B. ChristoforidisEmail author
  • Peter A. Wassenaar
  • Greg A. Christoforidis
  • Vincent Y. Ho
  • Michael V. Knopp
  • Petra M. Schmalbrock
Oculoplastics and Orbit



To determine the resolution and utility of using a dedicated, single-loop eye coil at 7 T to image the posterior ocular structures and vascular anatomy.


Imaging was performed on eight subjects (age range 26–54 years, four female, four male) with 7 T using a transmit head coil for excitation and a dedicated 5-cm eye surface receive coil. Acquisition parameters at 7 T for 3D spoiled gradient echo (3D-SPGR) sequences were optimized.


It was possible to delineate the retina, sclera, and choroid, and fine details within the anterior and posterior segments of the eye. Retro-orbital and posterior ocular anatomy remained well visualized despite motion and susceptibility artifacts of anterior ocular structures. The ophthalmic arteries and their first-order branches were consistently visualized and improved with registration and summation of repeat scans. Furthermore, the central retinal vessels could be visualized. Intravenous gadolinium contrast reagent did not noticeably improve image quality.


High-resolution 7-T MRI with a dedicated eye coil can provide unique high-resolution noninvasive images of retro-orbital and posterior ocular structural and vascular anatomy and is able to resolve structures as small as the central retina vein.


Magnetic resonance imaging Surface coil Orbital vessels 



We thank Kathryn Richdale, OD, for her role and guidance in the development of MRI surface eye coil for patient use.


  1. 1.
    Georgouli T, Chang B, Nelson M, James T, Tanner S, Shelley D, Saldana M, McGonagle D (2008) Use of high-resolution microscopy coil MRI for depicting orbital anatomy. Orbit 27(2):107–114PubMedCrossRefGoogle Scholar
  2. 2.
    Georgouli T, James T, Tanner S, Shelley D, Nelson M, Chang B, Backhouse O, McGonagle D (2008) High-resolution microscopy coil MR-eye. Eye 22:994–996PubMedCrossRefGoogle Scholar
  3. 3.
    Ettl A, Zwrtek K, Salomonowitz DA (2000) Anatomy of the orbital apex and cavernous sinus on high-resolution magnetic resonance images. Surv Ophthalmol 44(4):303–323PubMedCrossRefGoogle Scholar
  4. 4.
    Mafee MF, Rapoport M, Karimi A, Ansari SA, Shah J (2005) Orbital and ocular imaging using 3- and 1.5-T MR imaging systems. Neuroimag Clin N Am 15:1–21CrossRefGoogle Scholar
  5. 5.
    Kolk A, Stimmer H, Klopfer M, Wolff KD, Hohlweg-Majert B, Ploder O, Pautke C (2009) High-resolution magnetic resonance imaging with an orbital coil as an alternative to computed tomography scan as the primary imaging modality of pediatric orbital fractures. J Oral Maxillofac Surg 67:348–356PubMedCrossRefGoogle Scholar
  6. 6.
    Lemke AJ, Alai-Omid M, Hengst SA, Kazi I, Felix R (2009) Eye imaging with a 3.0-T MRI using a surface coil: a study on volunteers and initial patients with uveal melanoma. Eur Radiol 16:1084–1089CrossRefGoogle Scholar
  7. 7.
    Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, DeMarco JK (1999) Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci 40(6):1162–1169PubMedGoogle Scholar
  8. 8.
    Trick GL, Edwards PA, Deasi U, Morton PE, Latif Z, Berkowitz BA (2008) MRI retinovascular studies in humans: research in patients with diabetes. NMR Biomed 21:1003–1012PubMedCrossRefGoogle Scholar
  9. 9.
    Li Y, Cheng H, Duong TQ (2008) Blood-flow magnetic resonance imaging of the retina. NeuroImage 39:1744–1751PubMedCrossRefGoogle Scholar
  10. 10.
    Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) In: Magnetic resonance imaging: physical principles and sequence design, Wiley-Liss, New York, pp 331–380Google Scholar
  11. 11.
    Richdale K, Wassenaar P, Teal Bluestein K, Abduljalil A, Christoforidis JA, Lanz T, Knopp MV, Schmalbrock P (2009) 7 Tesla MR imaging of the human eye in vivo. J Magn Reson Imaging 30(5):924–932PubMedCrossRefGoogle Scholar
  12. 12.
    Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P (2008) Time-of-flight magnetic resonance angiography at 7 Tesla. Investig Radiol 48:568–573CrossRefGoogle Scholar
  13. 13.
    Schmalbrock P, Heverhagen JT, Chakeres DW, Chun H, Wassenaar PA, Mihai G Abduljalil AM, Sammet S, Koch RM, Duraj J, Knopp MV (2007) Optimization and application of simultaneous triple contrast, T1, arterial TOF and BOLD venography at 7 T. Proceedings of the International Society of Magnetic Resonance in Medicine (ABSTRACT)Google Scholar
  14. 14.
    Wassenaar PA, Dunbar J, Chakeres DW, Meeks D, Knopp MV, Schmalbrock P (2008) Optimized post-processing of 7 T simultaneous triple contrast: T1-weighted, TOF arteriography, and BOLD venography. Proceedings of the International Society of Magnetic Resonance in Medicine (ABSTRACT)Google Scholar
  15. 15.
    Christoforidis GA, Bourekas EC, Baujan M, Abduljalil AM, Kangarlu A, Spigos DG, Chakeres DW, Robitaille PML (1999) T1 and T2 weighted imaging at 8 Tesla. J Comput Assist Tomogr 23:857–866PubMedCrossRefGoogle Scholar
  16. 16.
    Abduljalil A, Schmalbrock P, Novak V, Chakeres DW (2003) Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field MRI. J Magn Reson Imaging 18:284–290PubMedCrossRefGoogle Scholar
  17. 17.
    Li TQ, van Gelderen P, Merkle H, Talagala L, Koretsky AP, Duyn J (2006) Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7 T. NeuroImage 32:1032–1040PubMedCrossRefGoogle Scholar
  18. 18.
    Duyn JH, van Gelderen P, Li TQ, De Zwaart J, Koretskey AP, Fukunga M (2007) High-field MRI of brain cortical substructure based on signal phase. PNAS 104(28):11796–11801PubMedCrossRefGoogle Scholar
  19. 19.
    Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204(1):272–277PubMedGoogle Scholar
  20. 20.
    Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618PubMedCrossRefGoogle Scholar
  21. 21.
    Wassenaar P, Lanz T, Richdale K, Christoforidis J, Schmalbrock P, Knopp M (2008) Development and safety assessment of a dedicated eye coil for 7 T MRI. RSNA Scientific Assembly. SSK18-09 (ABSTRACT)Google Scholar
  22. 22.
    Patz S, Bert RJ, Frederick E, Freddo TF (2007) T(1) and T(2) measurements of the fine structures of the in vivo and enucleated human eye. J Magn Reson Imaging 26:510–518PubMedCrossRefGoogle Scholar
  23. 23.
    Bert RJ, Patz S, Ossiani M, Caruthers SD, Jara H, Krejza J, Freddo T (2005) High-resolution MR imaging of the human eye. Acad Radiol 13:368–378CrossRefGoogle Scholar
  24. 24.
    Berkowitz BA (2008) MRI of retinal and optic nerve physiology. NMR Biomed 21:927PubMedCrossRefGoogle Scholar
  25. 25.
    Berkowitz BA, McDonald C, Ito Y, Tofts PS, Latif Z, Gross J (2001) Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med 46:412–416PubMedCrossRefGoogle Scholar
  26. 26.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, De Luca I, Drobnjak DE, Flitney R, Niazy J, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219CrossRefGoogle Scholar
  27. 27.
    Lemke AJ, Hosten N, Wiegel T, Prinz RD, Richter M, Bechrakis NE, Foerster PI, Felix R (2001) Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution MRI using a surface coil. Eur Radiol 11(12):2593–2601PubMedCrossRefGoogle Scholar
  28. 28.
    Bilaniuk LT, Schenck JF, Zimmerman RA, Hart HR Jr, Foster TH, Edelstein WA, Goldberg HI, Grossman RI (1985) Ocular and orbital lesions: surface coil MR imaging. Radiology 156:669–674PubMedGoogle Scholar
  29. 29.
    Ohnishi T, Noguchi S, Murakami N, Tajiri J, Harao M, Kawamoto H, Hoshi H, Jinnouchi S, Futami S, Nagamachi S, Watanabe K (1994) Extraocular muscles in Graves ophthalmopathy: usefulness of T2 relaxation time measurements. Radiology 190(3):857–862PubMedGoogle Scholar
  30. 30.
    Lieb WE, Cohen SM, Merton DA, Shields JA, Mitchell DG, Goldberg BB (1991) Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. Arch Ophthalmol 109:527–531PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • John B. Christoforidis
    • 1
    • 4
    Email author
  • Peter A. Wassenaar
    • 2
  • Greg A. Christoforidis
    • 3
  • Vincent Y. Ho
    • 1
  • Michael V. Knopp
    • 2
  • Petra M. Schmalbrock
    • 2
  1. 1.Department of Ophthalmology, College of MedicineThe Ohio State UniversityColumbusUSA
  2. 2.Department of Radiology, College of MedicineThe Ohio State UniversityColumbusUSA
  3. 3.Department of RadiologyUniversity of Chicago Medical CenterColumbusUSA
  4. 4.Havener Eye Institute-Retina DivisionThe Ohio State UniversityColumbusUSA

Personalised recommendations