Advertisement

Peptidoglycan and muramyl dipeptide from Staphylococcus aureus induce the expression of VEGF-A in human limbal fibroblasts with the participation of TLR2-NFκB and NOD2-EGFR

  • Marco Adán Juárez–Verdayes
  • Sandra Rodríguez–Martínez
  • Mario E. Cancino–Diaz
  • Juan C. Cancino–DiazEmail author
Basic Science

Abstract

Background

Keratitis caused by Staphylococcus aureus often leads to Vascular Endothelial Growth Factor (VEGF)-dependent neovascularization, but contribution of peptidoglycan (PGN), muramyl dipeptide (MDP) and lipoteichoic acid (LTA) from S. aureus to VEGF-dependent neovascularization has not been well-studied. This work was focused on the analysis of S. aureus cell wall components in the production of VEGF family members (VEGF-A, VEGF-B, VEGF-C and VEGF-D) in ocular limbal fibroblasts.

Methods

Primary culture of human limbal fibroblasts (PCHLFs) were stimulated with PGN, MDP, and LTA, and VEGF family; toll-like receptor 2 (TLR2), nucleotide-binding oligomerization domain 1 (NOD1), and NOD2 expression were determined by RT-PCR. Anti-TLR2 antibody, epidermal growth factor receptor (EGFR) signaling inhibitors (AG1478 and PD98059), and NFκB activation were used to analyze VEGF-A by ELISA. TLR2 and NOD1 expression were analyzed by flow cytometry.

Results

The stimulation of PCHLFs with PGN and MDP increased the levels of VEGF-A expression (mRNA and protein) in a time-dependent and dose-dependent manner. VEGF-B, VEGF-C and VEGF-D were expressed constitutively, and no further induction was observed in stimulated PCHLFs. LTA did not increase the expression levels of the VEGF family. TLR2 mRNA and protein were increased only when PCHLFs were stimulated with PGN. Treatment with an anti-TLR2 antibody blocked the interaction of PGN with the receptor, inhibiting VEGF-A over-expression; the presence of anti-TLR2 antibodies did not affect the over-production of VEGF-A after MDP treatment. PCHLFs stimulated with PGN and MDP, but not with LTA, activated NFκB. MDP stimulated the production of NOD1 and NOD2 mRNAs in a time-dependent and dose-dependent manner, and NOD2 protein was only increased by MDP. Treatment of PCHLFs with AG1478 and PD98059 inhibitors prior to stimulation with MDP resulted in the inhibition of VEGF-A over-production, compared with PCHLFs stimulated with MDP alone.

Conclusions

Taken together, these results suggest that limbal fibroblasts produce VEGF-A through PGN-TLR2-NFκB and MDP-NOD2-EGFR.

Keywords

Peptidoglycan Muramyl-dipeptide TLR2 NOD2 VEGF Limbal fibroblasts Staphylococcus aureus 

Abbreviations

VEGF

Vascular endothelial growth factor

PCHLFs

Primary culture of human limbal fibroblasts

PGN

Peptidoglycan

MDP

Muramyl dipeptide

LTA

Lipoteichoic acid

PRRs

Pattern recognition receptors

TLR

Toll-like receptor

NOD

Nucleotide-binding oligomerization domain

NFkB

Nuclear factor kappa light chain enhancer of activated B cells

IκBα

Nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha

EGFR

Epidermal growth factor receptor

Notes

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) No. 153268. S. Rodríguez–Martínez, M. Cancino–Diaz, and J.C. Cancino–Diaz appreciate the COFAA, and EDI, IPN fellowships; and SNI, CONACyT.

Disclosure statements

Marco Adán Juárez–Verdayes: none; Sandra Rodríguez–Martínez: none; Mario E. Cancino–Diaz: none; Juan C. Cancino–Diaz: none.

References

  1. 1.
    Homer JJ, Prentice MG, Cawkwell L, Birchall M, Greenman J, Stafford ND (2003) Angiogenesis and the expression of vascular endothelial growth factors A and C in squamous cell carcinoma of the Piriform Fossa. Arch Otolaryngol Head Neck Surg 129:1110–1114PubMedCrossRefGoogle Scholar
  2. 2.
    Ferguson TA, Apte RS (2008) Angiogenesis in eye disease: immunity gained or immunity lost? Semin Immunopathol 30:111–119PubMedCrossRefGoogle Scholar
  3. 3.
    Nakao S, Hata Y, Miura M, Noda K, Kimura YN, Kawahara S, Kita T, Hisatomi T, Nakazawa T, Jin Y, Dana MR, Kuwano M, Ono M, Ishibashi T, Hafezi-Moghadam A (2007) Dexamethasone inhibits interleukin-1beta-induced corneal neovascularization: role of nuclear factor-kappaB-activated stromal cells in inflammatory angiogenesis. Am J Pathol 171:1058–1065PubMedCrossRefGoogle Scholar
  4. 4.
    Yuuki T, Kanda T, Kishi S (2006) Expression of ephrin in retinal neovascularization and iris rubeosis. J Int Med Res 34:485–494PubMedGoogle Scholar
  5. 5.
    Chen J, Connor KM, Aderman CM, Willett KL, Aspegren OP, Smith LEH (2009) Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy. Invest Ophthalmol Vis Sci 50:1329–1335PubMedCrossRefGoogle Scholar
  6. 6.
    Kusari J, Padillo E, Zhou SX, Bai Y, Wang J, Song Z, Zhu M, Le YZ, Gil DW (2011) Effect of brimonidine on retinal and choroidal neovascularization in a mouse model of retinopathy of prematurity and laser-treated rats. Invest Ophthalmol Vis Sci 52:5424–5431PubMedCrossRefGoogle Scholar
  7. 7.
    Coman L, Coman OA, Păunescu H, Drăghia F, Fulga I (2010) VEGF-induced corneal neovascularisation in a rabbit experimental model. Rom J Morphol Embryol 51:327–336PubMedGoogle Scholar
  8. 8.
    Chien MH, Ku CC, Johansson G, Chen MW, Hsiao H, Su JL, Inoue H, Hua KT, Wei LH, Kuo ML (2009) Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis 30:2005–2013PubMedCrossRefGoogle Scholar
  9. 9.
    Benest AV, Harper SJ, Herttuala SY, Alitalo K, Bates DO (2008) VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc Res 78:315–323PubMedCrossRefGoogle Scholar
  10. 10.
    Hollborn M, Bringmann A, Faude F, Wiedemann P, Kohen L (2006) Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells. Biochem Biophys Res Commun 344:912–919PubMedCrossRefGoogle Scholar
  11. 11.
    Nishiguchi KM, Nakamura M, Kaneko H, Kachi S, Terasaki H (2007) The role of VEGF and VEGFR2/Flk1 in proliferation of retinal progenitor cells in murine retinal degeneration. Invest Ophthalmol Vis Sci 48:4315–4320PubMedCrossRefGoogle Scholar
  12. 12.
    Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443:993–997PubMedCrossRefGoogle Scholar
  13. 13.
    Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R (2006) Nonvascular VEGFR3–expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci USA 103:11405–11410PubMedCrossRefGoogle Scholar
  14. 14.
    Sonnex C (2010) Toll-like receptors and genital tract infection. Int J STD AIDS 21:153–157PubMedCrossRefGoogle Scholar
  15. 15.
    Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci 116:665–674PubMedCrossRefGoogle Scholar
  16. 16.
    Zheng M, Klinman DM, Gierynska M, Rouse BT (2002) DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Sci USA 99:8944–8949PubMedGoogle Scholar
  17. 17.
    Klinman DM, Zheng M, Gierynska M, Rouse BT (2002) DNA containing bioactive CpG motifs promote angiogenesis. Drug News Perspect 15:358–363PubMedCrossRefGoogle Scholar
  18. 18.
    Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A, Ramanathan M, Montesinos C, Jacobson M, Schwarzschild MA, Fink JS, Cronstein B (2002) Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A(2A) receptor agonists and endotoxin. Am J Pathol 160:2231–2244PubMedCrossRefGoogle Scholar
  19. 19.
    Rodriguez-Martinez S, Cancino-Diaz ME, Miguel PS, Cancino-Diaz JC (2006) Lipopolysaccharide from Escherichia coli induces the expression of vascular endothelial growth factor via toll-like receptor 4 in human limbal fibroblasts. Exp Eye Res 83:1373–1377PubMedCrossRefGoogle Scholar
  20. 20.
    Koff JL, Shao MXG, Ueki IF, Nadel JA (2008) Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol Lung Cell Mol Physiol 294:L1068–L1075PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan X, Wilhelmus KR (2009) Corneal neovascularization during experimental fungal keratitis. Mol Vis 15:1988–1996PubMedGoogle Scholar
  22. 22.
    Martin G, Schlunck G, Hansen LL, Agostini HT (2004) Differential expression of angioregulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 242:321–326PubMedCrossRefGoogle Scholar
  23. 23.
    Ikeda Y, Yonemitsu Y, Onimaru M, Nakano T, Miyazaki M, Kohno R, Nakagawa K, Ueno A, Sueishi K, Ishibashi T (2006) The regulation of vascular endothelial growth factors (VEGF-A, -C, and -D) expression in the retinal pigment epithelium. Exp Eye Res 83:1031–1040PubMedCrossRefGoogle Scholar
  24. 24.
    Simpson DA, Murphy GM, Bhaduri T, Gardiner TA, Archer BD, Stitt AW (1999) Expression of the VEGF gene family during retinal vaso-obliteration and hypoxia. Biochem Biophys Res Commun 262:333–340PubMedCrossRefGoogle Scholar
  25. 25.
    Cho ML, Ju JH, Kim HR, Oh HJ, Kang CM, Jhun JY, Lee SY, Park MK, Min JK, Park SH, Lee SH, Kim HY (2007) Toll-like receptor 2 ligand mediates the upregulation of angiogenic factor, vascular endothelial growth factor and interleukin-8/CXCL8 in human rheumatoid synovial fibroblasts. Immunol Lett 108:121–128PubMedCrossRefGoogle Scholar
  26. 26.
    Qiu JG, Factor S, Chang TH, Knighton D, Nadel H, Levenson SM (2000) Wound healing: captopril, an angiogenesis inhibitor, and Staphylococcus aureus peptidoglycan. J Surg Res 92:177–185PubMedCrossRefGoogle Scholar
  27. 27.
    Huang S, Robinson JB, DeGuzman A, Bucana CD, Fidler IJ (2000) Blockade of Nuclear Factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of Vascular Endothelial Growth Factor and Interleukin 8. Cancer Res 60:5334–5339PubMedGoogle Scholar
  28. 28.
    Li J, Shen J, Beuerman RW (2007) Expression of toll-like receptors in human limbal and conjunctival epithelial cells. Mol Vis 13:813–822PubMedGoogle Scholar
  29. 29.
    Gao T, Lin Z, Jin X (2009) Hydrocortisone suppression of the expression of VEGF may relate to toll-like receptor (TLR) 2 and 4. Curr Eye Res 34:777–784PubMedCrossRefGoogle Scholar
  30. 30.
    Telles PD, Hanks CT, Machado MA, Nör JE (2003) Lipoteichoic acid up-regulates VEGF expression in macrophages and pulp cells. J Dent Res 82:466–470PubMedCrossRefGoogle Scholar
  31. 31.
    You L, Kruse FE, Bacher S, Schmitz ML (2002) Lipoteichoic acid selectively induces the ERK signaling pathway in the cornea. Invest Ophthalmol Vis Sci 43:2272–2277PubMedGoogle Scholar
  32. 32.
    Kumar A, Zhang J, Yu FS (2004) Innate immune response of corneal epithelial cells to Staphylococcus aureus infection: role of peptidoglycan in stimulating proinflammatory cytokine secretion. Invest Ophthalmol Vis Sci 45:3513–3522PubMedCrossRefGoogle Scholar
  33. 33.
    Heyer G, Saba S, Adamo R, Rush W, Soong G, Cheung A, Prince A (2002) Staphylococcus aureus agr and sarA functions are required for invasive infection but not inflammatory responses in the lung. Infect Immun 70:127–133PubMedCrossRefGoogle Scholar
  34. 34.
    Guan R, Roychowdhury A, Ember B, Kumar S, Boons GJ, Mariuzza RA (2004) Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proc Natl Acad Sci USA 101:17168–17173PubMedCrossRefGoogle Scholar
  35. 35.
    Rodríguez-Martínez S, Cancino-Diaz ME, Jiménez-Zamudio L, García-Latorre E, Cancino-Diaz JC (2005) TLRs and NODs mRNA expression pattern in healthy mouse eye. Br J Ophthalmol 89:904–910PubMedCrossRefGoogle Scholar
  36. 36.
    Scurrell E, Stanley R, Schöniger S (2009) Immunohistochemical detection of NOD1 and NOD2 in the healthy murine and canine eye. Vet Ophthalmol 12:269–275PubMedCrossRefGoogle Scholar
  37. 37.
    Renner U, De Santana EC, Gerez J, Fröhlich B, Haedo M, Pereda MP, Onofri C, Stalla GK, Arzt E (2009) Intrapituitary expression and regulation of the gp130 cytokine interleukin-6 and its implication in pituitary physiology and pathophysiology. Ann N Y Acad Sci 1153:89–97PubMedCrossRefGoogle Scholar
  38. 38.
    Lipinski S, Till A, Sina C, Arlt A, Grasberger H, Schreiber S, Rosenstiel P (2009) DUOX2-derived reactive oxygen species are effectors of NOD2-mediated antibacterial responses. J Cell Sci 122:3522–3530PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marco Adán Juárez–Verdayes
    • 1
  • Sandra Rodríguez–Martínez
    • 2
  • Mario E. Cancino–Diaz
    • 2
  • Juan C. Cancino–Diaz
    • 1
    Email author
  1. 1.Department of MicrobiologyEscuela Nacional de Ciencias Biológicas of Instituto Politécnico NacionalMexico CityMexico
  2. 2.Department of ImmunologyEscuela Nacional de Ciencias Biológicas of Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations