Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT

  • Penpe Gul Firat
  • Selim Doganay
  • Ersan Ersin Demirel
  • Cemil Colak



The aim of this study was to evaluate the macular thickness (MT), ganglion cell complex (GCC), and circum-papillary retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) and normal tension glaucoma (NTG) with spectral domain optical coherence tomography (SD-OCT).


A total of 169 subjects were enrolled: 52 normal subjects, 61 with POAG, and 56 with NTG. Spectral-domain optical coherence tomography (SD-OCT) was used to analyze MT, GCC, and RNFL thickness. To compare the discrimination capabilities between the MT, GCC, and RNFL thickness measurements, we analyzed the areas under the receiver operating characteristic (ROC) curves (AUCs). The relationships between GCC and RNFL measurement and also the relationships of the groups, with age, gender, GCC, and RNFL thickness were assessed.


Normal subjects showed the thickest superior and inferior GCC, followed by in order NTG and POAG (p < 0.05). While there was a statistically difference in MT value of the normal subjects and the glaucoma patients (p < 0.05), MT value did not differ between POAG and NTG (p < 0.05). RNFL thickness parameters were significantly greater in normal subjects, followed in order by the NTG, and POAG (p < 0.05). Between the normal and entire glaucoma groups, all GCC and RNFL parameters showed the similar discrimination power. RNFL thickness parameters correlated significantly with all GCC thickness (p < 0.05). Superior RNFL thickness was the only independent variable between the POAG and NTG patients (odds ratio (OR) 0.942, p = 0.004, 95 %CI 0.905–0.981).


SD-OCT evaluation results suggest higher GCC and RNFL parameters for NTG than POAG.


Primary open-angle glaucoma Normal tension glaucoma Ganglion cell complex Retinal nerve fiber layer thickness Spectral optical coherence tomography 


Financial interest

The authors have no financial interest for this work.


  1. 1.
    Gutteridge IF (2000) Normal tension glaucoma: diagnostic features and comparisons with primary open angle glaucoma. Clin Exp Optom 83:161–172PubMedCrossRefGoogle Scholar
  2. 2.
    Sack J (2000) The management of normal tension glaucoma. Clin Exp Optom 83:185–189PubMedCrossRefGoogle Scholar
  3. 3.
    Caprioli J, Spaeth GL (1985) Comparison of the optic nerve head in high- and low-tension glaucoma. Arch Ophthalmol 103:1145–1149PubMedCrossRefGoogle Scholar
  4. 4.
    Hitchings RA, Anderton SA (1983) A comparative study of visual field defects in low-tension glaucoma and chronic simple glaucoma. Br J Ophthalmol 67:818–821PubMedCrossRefGoogle Scholar
  5. 5.
    Kitazawa Y, Shirato S, Yamamoto T (1986) Optic disc haemorrhage in low-tension glaucoma. Ophthalmology 93:853–857PubMedGoogle Scholar
  6. 6.
    Zeimer R, Asrani S, Zou S, Quigley H, Jampel H (1998) Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology 105:224–231PubMedCrossRefGoogle Scholar
  7. 7.
    Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N (2007) Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 51:197–203PubMedCrossRefGoogle Scholar
  8. 8.
    Choi MG, Han M, Kim YI, Lee JH (2005) Comparison of glaucomatous parameters in normal, ocular hypertensive and glaucomatous eyes using optical coherence tomography 3000. Korean J Ophthalmol 19:40–46PubMedCrossRefGoogle Scholar
  9. 9.
    Greenfield DS, Bagga H, Knighton RW (2003) Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. Arch Ophthalmol 121:41–46PubMedCrossRefGoogle Scholar
  10. 10.
    Tan O, Li G, Lu AT, Varma R, Huang D (2008) Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology 115:949–956PubMedCrossRefGoogle Scholar
  11. 11.
    Nakamura H, Hangai M, Mori S, Hirose F, Yoshimura N (2011) Hemispherical focal macular photopic negative response and macular inner retinal thickness in open-angle glaucoma. Am J Ophthalmol 151:494–506PubMedCrossRefGoogle Scholar
  12. 12.
    Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK (2005) Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology 112:391–400PubMedCrossRefGoogle Scholar
  13. 13.
    Hodapp E, Parrish RK II, Anderson DR (1993) Clinical decisions in glaucoma. Mosby, St. LouisGoogle Scholar
  14. 14.
    Langenegger SJ, Funk J, Töteberg-Harms M (2011) Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 52:3338–3344PubMedCrossRefGoogle Scholar
  15. 15.
    Savini G, Carbonelli M, Barboni P (2011) Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol 22:115–123PubMedCrossRefGoogle Scholar
  16. 16.
    Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, Kim YJ, Park SB, Hong HE, Kook MS (2010) Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci 51:1446–1452PubMedCrossRefGoogle Scholar
  17. 17.
    Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA (2010) Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology 117:1692–1699PubMedCrossRefGoogle Scholar
  18. 18.
    Chen J, Huang H, Wang M, Sun X, Qian S (2012) Fourier domain OCT measurement of macular, macular ganglion cell complex, and peripapillary RNFL thickness in glaucomatous Chinese eyes. Eur J Ophthalmol Mar 20 [Epub ahead of print]. doi: 10.5301/ejo.5000131
  19. 19.
    Mok KH, Lee VW, So KF (2004) Retinal nerve fiber loss in high- and normal-tension glaucoma by optical coherence tomography. Optom Vis Sci 81:369–372PubMedCrossRefGoogle Scholar
  20. 20.
    Konstantakopoulou E, Reeves BC, Fenerty C, Harper RA (2008) Retinal nerve fiber layer measures in high- and normal-tension glaucoma. Optom Vis Sci 85:538–542PubMedCrossRefGoogle Scholar
  21. 21.
    Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464PubMedGoogle Scholar
  22. 22.
    Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN (2005) Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am J Ophthalmol 139:44–55PubMedCrossRefGoogle Scholar
  23. 23.
    Mori S, Hangai M, Sakamoto A, Yoshimura N (2010) Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma 19:528–534PubMedCrossRefGoogle Scholar
  24. 24.
    Kim NR, Hong S, Kim JH, Rho SS, Seong GJ, Kim CY (2011) Comparison of macular ganglion cell complex thickness by fourier-domain OCT in normal tension glaucoma and primary open-angle glaucoma. J Glaucoma June 22 [Epub ahead of print]. doi: 10.1097/IJG.0b013e3182254cde
  25. 25.
    Kim NR, Lee ES, Seong GJ, Kang SY, Kim JH, Hong S, Kim CY (2011) Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol 95:1115–1121PubMedCrossRefGoogle Scholar
  26. 26.
    Kubota T, Khalil AK, Honda M, Ito S, Nishioka Y, Inomata H (1999) Comparative study of retinal nerve fiber layer damage in Japanese patients with normal- and high-tension glaucoma. J Glaucoma 8:363–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Penpe Gul Firat
    • 1
  • Selim Doganay
    • 1
  • Ersan Ersin Demirel
    • 1
  • Cemil Colak
    • 2
  1. 1.Department of OphthalmologyInonu University, School of MedicineMalatyaTurkey
  2. 2.Department of BiostatisticsInonu UniversityMalatyaTurkey

Personalised recommendations