Advertisement

Analysis of optical side-effects of fs-laser therapy in human presbyopic lens simulated with modified contact lenses

  • Monika Peter
  • Robert Kammel
  • Roland Ackermann
  • Stefan Schramm
  • Bernd-Ulrich Seifert
  • Katharina Frey
  • Marcus Blum
  • Stefan Nolte
  • Kathleen S. KunertEmail author
Refractive Surgery

Abstract

Background

In a single-blinded study, optical side-effects of a potential femtosecond (fs)-laser therapy in presbyopic human lenses were tested. Simulation of this therapy was carried out by applying fs-laser patterns into standard contact lenses (CL).

Methods

In the first part of the study, the influence of the numerical aperture on optical side-effects was investigated by comparing a typical fs-LASIK configuration to a fs-presbyopia treatment (n = 11). The second part focused on a possible improvement of visual performance by comparing a regular grid pattern to a randomly chosen spacing of the laser spots (n = 16). Visual acuity was measured with ETDRS charts, contrast sensitivity with F.A.C.T. charts and mesopic vision with Mesotest II. Forward scattered light was measured with the C-Quant (both instruments: Oculus Optikgeräte GmbH, Germany). A questionnaire detected subjective quality of vision. Differences between laser-treated and untreated CL and among the modifications were analyzed.

Results

The laser-treated and standard CL indicated no significant difference in visual acuity, contrast sensitivity and mesopic vision without glare. While wearing modified lenses with a regular grid, quality of vision decreased significantly by means of mesopic vision with glare and subjective straylight. These modifications also caused an impairment of subjective quality of vision. In contrast, there was no significant difference between the random pattern and standard CL.

Conclusion

The increase of optical side-effects was reproducibly dependent on the geometry of the laser-structure. A randomized grid induced the least limitation. The study results are useful for planning possible laser-patterns in fs-laser therapy of the presbyopic lens.

Keywords

Presbyopia Lens Fs-laser Visual quality Straylight 

Notes

Acknowledgements

The authors sincerely thank Stephanie C Bühren for excellent assistance in study design. The project was funded by the German Federal Ministry for Education and Research (HELIOS Klinikum Erfurt, 13N8835. Friedrich Schiller University Jena, 13N8831. Fraunhofer IOF Jena, 13N8830).

References

  1. 1.
    Glasser A (2006) Accommodation: mechanism and measurement. Ophthalmol Clin North Am 19(1):1–12, ReviewPubMedGoogle Scholar
  2. 2.
    Holzer MP, Rabsilber TM, Auffarth GU (2006) Presbyopia correction using intraocular lenses. Ophthalmologe 103(8):661–666, ReviewPubMedCrossRefGoogle Scholar
  3. 3.
    Blum M, Kunert KS, Riehemann S, Ackermann R, Dick M (2008) Presbyopietherapie mit Femtosekundenlaser. Ophthalmo-Chirurgie 20:40–43Google Scholar
  4. 4.
    Reggiani Mello GH, Krueger RR (2011) Femtosecond laser photodisruption of the crystalline lens for restoring accommodation. Int Ophthalmol Clin Spring 51(2):87–95CrossRefGoogle Scholar
  5. 5.
    Ripken T, Oberheide U, Fromm M, Schumacher S, Gerten G, Lubatschowski H (2008) fs-Laser induced elasticity changes to improve presbyopic lens accommodation. Graefes Arch Clin Exp Ophthalmol 246(6):897–906PubMedCrossRefGoogle Scholar
  6. 6.
    Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B: Laser Optic 81:1015–1047CrossRefGoogle Scholar
  7. 7.
    Kohnen T, Bühren J, Cichocki M, Kasper T, Terzi E, Ohrloff C (2006) Optical quality after refractive corneal surgery. Ophthalmologe 103(3):184–191, ReviewPubMedCrossRefGoogle Scholar
  8. 8.
    van den Berg TJTP (1995) Analysis of intraocular straylight, especially in relation to age. Optom Vis Sci 72(2):52–59PubMedCrossRefGoogle Scholar
  9. 9.
    Krueger RR, Thornton IL, Xu M, Bor Z, van den Berg TJTP (2008) Rainbow glare as an optical side-effect of IntraLASIK. Ophthalmology 115(7):1187–1195PubMedCrossRefGoogle Scholar
  10. 10.
    Le Harzic R, Bückle R, Wüllner C, Donitzky C, König K (2005) Laser safety aspects for refractive eye surgery with femtosecond laser pulses. Med Laser Appl 20:233–238CrossRefGoogle Scholar
  11. 11.
    Sill Optics GmbH & Co. KG, Catalog. available at: http://www.silloptics.de/downloads/katalog-2011screen.pdf. Accessed July 11th 2011
  12. 12.
    Carl Zeiss Meditec. VisuMax — Defining the pulse rate of femtosecond performance. visumax_pulserate_en.pdf available at: http://www.meditec.zeiss.de/88256DE40004A9B4/0/23AD3ED526B0AD4BC125776E002D39ED/$file/visumax_schrittmacher_de.pdf, Accessed July 7th, 2011
  13. 13.
    Hönninger C, Plötner M, Ortaç B, Ackermann R, Kammel R, Limpert J, Nolte S, Tünnermann A (2009) Femtosecond fiber laser system for medical applications. Proc SPIE 7203:72030WCrossRefGoogle Scholar
  14. 14.
    Riehemann S, Palme M, Peschel T, Kunert KS, Notni G, Blum M (2011) An accommodating opto-mechanical model of the aging human eye. J Mod Opt 58:1788–1803CrossRefGoogle Scholar
  15. 15.
    Oculus Optikgeräte GmbH: Mesotest II Gebrauchsanweisung. Wetzlar, Germany, G/62800/0397/dGoogle Scholar
  16. 16.
    Oculus Optikgeräte GmbH: C-Quant 80000 Gebrauchsanweisung. Wetzlar, Germany; G/80000/0705/dGoogle Scholar
  17. 17.
    van den Berg TJTP, Van Rijn R, Michael R, Heine C, Coeckelbergh T, Nischler C, Wilhelm H, Grabner G, Emesz M, Barraquer RI, Coppens JE, Franssen L (2007) Straylight effects with aging and lens extraction. Am J Ophthalmol 144:358–363CrossRefGoogle Scholar
  18. 18.
    Ackermann R, Kunert KS, Kammel R, Bischoff S, Buehren SC, Schubert H, Blum M, Nolte S (2011) Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs. Graefes Arch Clin Exp Ophthalmol 249:1567–1573PubMedCrossRefGoogle Scholar
  19. 19.
    Schumacher S, Fromm M, Oberheide U, Bock P, Imbschweiler I, Hoffmann H, Beinecke A, Gerten G, Wegener A, Lubatschowski H (2009) Femtosecond–lentotomy treatment: six month follow up of in vivo treated rabbit lenses. Proc SPIE 7373:73730HCrossRefGoogle Scholar
  20. 20.
    Liesegang TJ (2002) Physiologic changes of the cornea with contact lens wear. CLAO J 28:12–27PubMedGoogle Scholar
  21. 21.
    Rozema JJ, Van den Berg TJTP, Tassignon MJ (2010) Retinal straylight as a function of age and ocular biometry in healthy eyes. Invest Ophthalmol Vis Sci 51(5):2795–2799, Epub 2009 Oct 29PubMedCrossRefGoogle Scholar
  22. 22.
    Cervino A, Montes-Mico R, Hosking SL (2008) Performance of the compensation comparison method for retinal straylight measurement: effect of patient's age on repeatability. Br J Ophthalmol 92:788–791PubMedCrossRefGoogle Scholar
  23. 23.
    van der Meulen IJ, Engelbrecht LA, van Vliet JM, Lapid-Gortzak R, Nieuwendaal CP, Mourits MP, Schlingemann RO, van den Berg TJTP (2010) Straylight measurements in contact lens wear. Cornea 29(5):516–522PubMedCrossRefGoogle Scholar
  24. 24.
    Bach M, Wesemann W, Kolling G, Bühren J, Krastel H, Schiefer U (2008) Photopic contrast sensitivity. Local contrast perception. Ophthalmologe 105(1):50–9, ReviewCrossRefGoogle Scholar
  25. 25.
    Puell MC, Palomo C, Sánchez-Ramos C, Villena C (2004) Mesopic contrast sensitivity in the presence or absence of glare in a large driver population. Graefes Arch Clin Exp Ophthalmol 242(9):755–761PubMedCrossRefGoogle Scholar
  26. 26.
    Franssen L, Coppens JE, van den Berg TJTP (2006) Compensation comparison method of retinal straylight. Invest Ophthalmol Vis Sci 47(2):768–776PubMedCrossRefGoogle Scholar
  27. 27.
    Hammond SD, Puri AK, Ambati BK (2004) Quality of vision and patient satisfaction after LASIK. Curr Opin Ophthalmol 15:328–332PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Monika Peter
    • 1
  • Robert Kammel
    • 2
  • Roland Ackermann
    • 2
  • Stefan Schramm
    • 3
  • Bernd-Ulrich Seifert
    • 3
  • Katharina Frey
    • 4
  • Marcus Blum
    • 1
  • Stefan Nolte
    • 2
  • Kathleen S. Kunert
    • 1
    Email author
  1. 1.Department of OphthalmologyHELIOS Klinikum ErfurtErfurtGermany
  2. 2.Institute of Applied PhysicsFriedrich Schiller University JenaJenaGermany
  3. 3.Biomedical Engineering and InformaticsIlmenau University of TechnologyIlmenauGermany
  4. 4.Fraunhofer IOF JenaJenaGermany

Personalised recommendations