A new method of cornea modulation with excimer laser for simultaneous correction of presbyopia and ametropia

  • Detlef UthoffEmail author
  • Markus Pölzl
  • Daniel Hepper
  • Detlef Holland
Refractive Surgery



To investigate the outcomes of simultaneous correction of presbyopia and ametropia by a bi-aspheric cornea modulation technique, based on the creation of a central area hyperpositive for near vision and leaving the pericentral cornea for far vision in hyperopic, emmetropic, and myopic presbyopic patients.


Sixty eyes of 30 patients were treated with the PresbyMAX technique by one surgeon (D.U.) at the Eye Hospital Bellevue, Kiel, Germany.


Twenty eyes with hyperopic presbyopia, 20 eyes with emmetropic presbyopia, and 20 eyes with myopic presbyopia underwent Femto-Lasik, and were assessed up to 6 months postoperatively. All eyes underwent cornea treatment using the PresbyMAX® software, delivering a bi-aspheric multifocal ablation profile developed by SCHWIND eye-tech-solutions (Kleinostheim, Germany). All flaps were created by Ziemer LDV Femtolaser (Port, Switzerland).


The mean binocular distance of uncorrected visual acuity (DUCVA) improved in the hyperopic group from 0.28 ± 0.29 logMAR to −0.04 ± 0.07 logMAR, in the emmetropic group from −0.05 ± 0.07 logMAR to 0.02 ± 0.11 logMAR, and in the myopic group from 0.78 ± 0.27 logMAR to 0.09 ± 0.08 logMAR. The mean binocular near uncorrected visual acuity (NUCVA) increased in the hyperopic group from 0.86 ± 0.62 logRAD to 0.24 ± 0.23 logRAD, and in the emmetropic group from 0.48 ± 0.14 logRAD to 0.18 ± 0.11 logRAD. The myopic presbyopes showed a decrease of the mean binocular NUCVA from 0.04 ± 0.19 logRAD to 0.12 ± 0.18 logRAD. The mean postoperative spherical equivalent for distance refraction was −0.13 ± 0.61 D for the hyperopic presbyopia, −0.43 ± 0.35 D for the emmetropic presbyopia, and −0.68 ± 0.42 D for the myopic presbyopia group, whereas the software took aim at −0.50 D in all groups.


In presbyopic patients without symptomatic cataracts, but refractive errors, PresbyMAX® will decrease the presbyopic symptoms and correct far distance refraction in the same treatment, offering spectacle-free vision in daily life in most of the treated patients. Further investigation is necessary to evaluate the overall benefit of this procedure.


Presbyopia Ametropia Presbylasik LASIK 


  1. 1.
    Montes-Mico R, Espana E, Bueno I, Charman WN, Menezo JL (2004) Visual performance with multifocal intraocular lenses: mesopic contrast sensitivity under distance and near conditions. Ophthalmology 111:85–96PubMedCrossRefGoogle Scholar
  2. 2.
    Alio JL, Tavolato M, De la Hoz F, Claramonte P, Rodriguez-Prats JL, Galal A (2004) Near vision restoration with refractive lens exchange and pseudoaccommodating and multifocal refractive and diffractive intraocular lenses: comparative clinical study. J Cataract Refract Surg 30:2494–2503PubMedCrossRefGoogle Scholar
  3. 3.
    Uthoff D, Gulati A, Hepper D, Holland D (2007) Potentially accommodating 1CU intraocular lens: 1-year results in 553 eyes and literature review. J Refract Surg 23:159–171PubMedGoogle Scholar
  4. 4.
    Goldberg DB (2001) Laser in situ keratomileusis monovision. J Cataract Refract Surg 27:1449–1455PubMedCrossRefGoogle Scholar
  5. 5.
    Miranda D, Krueger RR (2004) Monovision laser in situ keratomileusis for pre-presbyopic and presbyopic patients. J Refract Surg 20:325–328PubMedGoogle Scholar
  6. 6.
    Gould G (1959) Laser. US patent: US19590804539 19590406Google Scholar
  7. 7.
    Schawlow AL, Townes CH (1958) Infrared and optical masers. Phys Rev 112:1940–1949CrossRefGoogle Scholar
  8. 8.
    Swinger CA (1981) Refractive surgery for the correction of myopia. Trans Ophthalmol Soc U K 101:434–439PubMedGoogle Scholar
  9. 9.
    Munnerlyn CR, Koons SJ, Marshall J (1988) Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 14:46–52PubMedGoogle Scholar
  10. 10.
    Seiler T, Genth U, Holschbach A, Derse M (1993) Aspheric photorefractive keratectomy with excimer laser. Refract Corneal Surg 9:166–172PubMedGoogle Scholar
  11. 11.
    Trokel SL, Srinivasan R, Braren B (1983) Excimer laser surgery of the cornea. Am J Ophthalmol 96:710–715PubMedGoogle Scholar
  12. 12.
    Krueger RR, Trokel SL (1985) Quantitation of corneal ablation by ultraviolet laser light. Arch Ophthalmol 103:1741–1742PubMedCrossRefGoogle Scholar
  13. 13.
    Pettit GH, Ediger MN, Weiblinger RP (1991) Excimer laser corneal ablation: absence of a significant "incubation" effect. Lasers Surg Med 11:411–418PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng AC, Lam DS (2005) Monovision LASIK for pre-presbyopic and presbyopic patients. J Refract Surg 21:411–414PubMedGoogle Scholar
  15. 15.
    Jain S, Ou R, Azar DT (2001) Monovision outcomes in presbyopic individuals after refractive surgery. Ophthalmology 108:1430–1433PubMedCrossRefGoogle Scholar
  16. 16.
    Becker KA, Jaksche A, Holz FG (2006) PresbyLASIK: treatment approaches with the excimer laser. Ophthalmologe 103:667–672PubMedCrossRefGoogle Scholar
  17. 17.
    Telandro A (2004) Pseudo-accommodative cornea: a new concept for correction of presbyopia. J Refract Surg 20:714–717Google Scholar
  18. 18.
    Alió JL, Chaubard JJ, Caliz A, Sala E, Patel S (2006) Correction of presbyopia by technovision central multifocal LASIK (presbyLASIK). J Refract Surg 22:453–460PubMedGoogle Scholar
  19. 19.
    Pinelli R, Ortiz D, Simonetto A, Bacchi C, Sala E, Alió JL (2008) Correction of presbyopia in hyperopia with a center-distance, paracentral-near technique using the Technolas 217z platform. J Refract Surg 24:494–500PubMedGoogle Scholar
  20. 20.
    Thibos LN, Hong X, Bradley A, Applegate RA (2004) Accuracy and precision of objective refraction from wavefront aberrations. J Vis 4(4):329–351PubMedCrossRefGoogle Scholar
  21. 21.
    Coleman DJ (1986) Studies in monocular and binocular accomomodation with their clinical applications. Am J Ophthalmol 5:867–877Google Scholar
  22. 22.
    Glasser A (2006) Restoration of accommodation. Curr Opin Ophthalmol 17:12–18PubMedCrossRefGoogle Scholar
  23. 23.
    Montes-Mico R, Alio JL (2003) Distance and near contrast sensitivitiy after multifocal intraocular lens implantation. J Cataract Refract Surg 10:703–711CrossRefGoogle Scholar
  24. 24.
    Moreira H, Garbus JJ, Fassano A (1992) Multifocal corneal topographic changes with excimer laser photorefractive keratectomy. Arch Opthalmol 110:994–999CrossRefGoogle Scholar
  25. 25.
    Jackson WB, Tuan KM, Mintsioulis G (2011) Aspheric wavefront-guided LASIK to treat hyperopic presbyopia: 12-month results with the VISX platform. J Refract Surg 27:519–529. doi: 10.3928/1081597X-20101110-02 PubMedCrossRefGoogle Scholar
  26. 26.
    Tarrant J, Roorda A, Wildsoet CF (2010) Determining the accommodative response from wavefront aberrations. J Vis 10(5):4 doi: 10.1167/10.5.4 PubMedCrossRefGoogle Scholar
  27. 27.
    Denoyer A, Denoyer L, Halfon J, Majzoub S, Pisella PJ (2009) Comparative study of aspheric intraocular lenses with negative spherical aberration or no aberration. J Cataract Refract Surg 35:496–503PubMedCrossRefGoogle Scholar
  28. 28.
    Shentu X, Tang X, Yao K (2008) Spherical aberration, visual performance and pseudoaccommodation of eyes implanted with different aspheric intraocular lens. Clin Experiment Ophthalmol 36:620–624PubMedCrossRefGoogle Scholar
  29. 29.
    Collins M (2001) The effect of monochromatic aberrations on Autoref R-1 readings. Ophthalmic Physiol Opt 21:217–227PubMedCrossRefGoogle Scholar
  30. 30.
    Iida Y, Shimizu K, Ito M, Suzuki M (2008) Influence of age on ocular wavefront abberation changes with accommodation. J Refract Surg 24:696–701PubMedGoogle Scholar
  31. 31.
    López-Gil N, Fernández-Sánchez V, Legras R, Montés-Micó R, Lara F, Nguyen-Khoa JL (2008) Accomodation-related changes in monochromatic aberrations of the human eye as a function of age. Invest Opthalmol Vis Sci 24:1736–1743CrossRefGoogle Scholar
  32. 32.
    Etchinson DA, Markwell EL (2008) Aberrations of emmetropic subjects at different ages. Vision Res 28:2224–2231Google Scholar
  33. 33.
    Illueca C, Alió JL, Mas D, Ortiz D, Pérez J, Espinosa J, Esperanza S (2008) Pseudoaccommodation and visual acuity with Technovision presbyLASIK and a theoretical simulated Array multifocal intraocular lens. J Refract Surg 24:344–349PubMedGoogle Scholar
  34. 34.
    Jung SW, Kim MJ, Park SH, Joo CK (2008) Multifocal corneal ablation for hyperopic presbyopes. J Refract Surg 24:903–911PubMedGoogle Scholar
  35. 35.
    Pande M, Hillmann JS (1993) Optical zone centration in keratorefractive surgery: entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology 100:1230–1237PubMedGoogle Scholar
  36. 36.
    Boxer Wachler BS, Korn TS, Chandra NS, Michel FK (2003) Decentration of the optical zone: Centering on the pupil versus the coaxially sighted corneal light reflex in LASIK for hyperopia. J Refract Surg 19:464–465Google Scholar
  37. 37.
    de Ortueta D, Arba MS (2007) Centration during hyperopic LASIK using the coaxial light reflex. J Refract Surg 23:11PubMedGoogle Scholar
  38. 38.
    Maloney RK (1990) Corneal topography and optical zone location in photorefractive keratectomy. Refract Corneal Surg 6:363–371PubMedGoogle Scholar
  39. 39.
    Alio JL, Amparo F, Ortiz D, Moreno L (2009) Corneal multifocality with excimer laser for presbyopia correction. Curr Opin Opthalmol 20:264–271. doi: 10.1097/ICU.0b013e32832a7ded CrossRefGoogle Scholar
  40. 40.
    Epstein RL, Gurgos MA (2009) Presbyopia treatment by monocular peripheral presbyLASIK. J Refract Surg 25:516–523PubMedGoogle Scholar
  41. 41.
    Charman WN (2004) Ablation design in relation to spatial frequency, depth-of-focus, and age. J Refract Surg 20:S542–S549PubMedGoogle Scholar
  42. 42.
    Dai GM (2006) Optical surface optimization for the correction of presbyopia. Appl Opt 10(45):4184–4195CrossRefGoogle Scholar
  43. 43.
    Patel S, Alió JL, Feinbaum C (2008) Comparison of Acri. Smart multifocal IOL, crystalens AT-45 accommodative IOL, and Technovision presbyLASIK for correcting presbyopia. J Refract Surg 24:294–299PubMedGoogle Scholar
  44. 44.
    Ortiz D, Alió JL, Illueca C, Mas D, Sala E, Pérez J, Espinosa J (2007) Optical analysis of presbyLASIK treatment by a light propagation algorithm. J Refract Surg 23:39–44PubMedGoogle Scholar
  45. 45.
    Cantú R, Rosales MA, Tepichín E, Curioca A, Montes V, Bonilla J (2004) Advanced surface ablation for presbyopia using the Nidek EC-5000 laser. J Refract Surg 20(5 Suppl):S711–S713PubMedGoogle Scholar
  46. 46.
    Artola A, Patel S, Schimchak P, Ayala MJ, Ruiz-Moreno JM, Alió JL (2006) Evidence for delayed presbyopia after photorefractive keratectomy for myopia. Ophthalmology 113:735.e1–741.e1CrossRefGoogle Scholar
  47. 47.
    de Ortueta D (2008) Is peripheral presbyLASIK a center-distance technique? J Refract Surg 24:561PubMedGoogle Scholar
  48. 48.
    Wright KW, Guemes A, Kapadia MS, Wilson SE (1999) Binocular function and patient satisfaction after monovision induced by myopic photorefractive keratectomy. J Cataract Refract Surg 25:177–182PubMedCrossRefGoogle Scholar
  49. 49.
    Johannsdottir KR, Stelmach LB (2001) Monovision: a review of the scientific literature. Optom Vis Sci 78:646–651PubMedCrossRefGoogle Scholar
  50. 50.
    Braun EH, Lee J, Steinert RF (2008) Monovision in LASIK. Ophthalmology 115:1196–1202, Epub 2007 Dec 3PubMedCrossRefGoogle Scholar
  51. 51.
    Reinstein DZ, Couch DG, Archer TJ (2009) LASIK for hyperopic astigmatism and presbyopia using micro-monovision with the Carl Zeiss Meditec MEL80 platform. J Refract Surg 25:37–58PubMedGoogle Scholar
  52. 52.
    Reinstein DZ, Archer TJ, Gobbe M (2011) LASIK for myopic astigmatism and presbyopia using non-linear aspheric micro-monovision with the Carl Zeiss Meditec MEL 80 platform. J Refract Surg 27:23–37. doi: 10.3928/1081597X-20100212-04 PubMedCrossRefGoogle Scholar
  53. 53.
    Vinciguerra P, Nizzola GM, Bailo G, Nizzola F, Ascari A, Epstein D (1998) Excimer laser photorefractive keratectomy for presbyopia: 24-month follow-up in three eyes. J Refract Surg 14:31–37PubMedGoogle Scholar
  54. 54.
    Trindade F, Pascucci SE (2006) Keratorefractive approaches to achieving pseudoaccommodation. Ophthalmol Clin North Am 19:35–44, vi. ReviewPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Detlef Uthoff
    • 1
    Email author
  • Markus Pölzl
    • 1
  • Daniel Hepper
    • 1
  • Detlef Holland
    • 1
  1. 1.Eye Hospital BellevueKielGermany

Personalised recommendations