Relationship between retinal morphological findings and visual function in age-related macular degeneration

  • Yumiko Akagi-Kurashige
  • Akitaka TsujikawaEmail author
  • Akio Oishi
  • Sotaro Ooto
  • Kenji Yamashiro
  • Hiroshi Tamura
  • Isao Nakata
  • Naoko Ueda-Arakawa
  • Nagahisa Yoshimura
Retinal Disorders



We aimed to study the retinal morphological findings associated with exudative age-related macular degeneration (AMD) and their association with visual prognosis.


We retrospectively reviewed the medical records of 96 consecutive patients (96 eyes) with exudative AMD. Retinal structural changes were examined using optical coherence tomography (OCT).


Initial OCT examination showed cystoid macular edema in 18 eyes (18.8%), fibrin exudate in 56 eyes (58.3%), and hyperreflective foci within the neurosensory retina in 78 eyes (81.3%). Upon initial examination, an external limiting membrane (ELM) line was detected under the fovea in 64 eyes (66.7%). Using Pearson’s correlation analyses, final visual acuity (VA) was correlated with initial VA (r = 0.61, p < 0.001), age (r = 0.34, p < 0.001), initial total foveal thickness (r = 0.41, p < 0.001), presence of hyperreflective foci (r = 0.40, p < 0.001), and detection of a foveal ELM line (r = 0.55, p < 0.001). After multiple regression analysis, final VA correlated with initial VA (r = 0.48, p < 0.001), initial presence of hyperreflective foci (r = 0.23, p = 0.054), and detection of a foveal ELM line (r = 0.36, p = 0.008).


In eyes with exudative AMD, final VA was most correlated with initial VA. In addition, the initial integrity of the foveal outer retina was partially correlated with the visual prognosis. The initial ELM condition was associated with good final VA, while the initial presence of hyperreflective foci in the foveal neurosensory retina was associated with poor final VA.


Age-related macular degeneration External limiting membrane Hyperreflective foci Optical coherence tomography Polypoidal choroidal vasculopathy 


  1. 1.
    Yannuzzi LA, Friedman R, Fine SL, Gass JDM, Gitter KA, Orth DH, Singerman LJ (1988) Symposium on age-related macular degeneration. Bull N Y Acad Med 64:955–1013PubMedGoogle Scholar
  2. 2.
    Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431PubMedCrossRefGoogle Scholar
  3. 3.
    Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP, Schneider S (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355:1432–1444PubMedCrossRefGoogle Scholar
  4. 4.
    Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T (2009) Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology 116:57–65PubMedCrossRefGoogle Scholar
  5. 5.
    Heier JS, Boyer DS, Ciulla TA, Ferrone PJ, Jumper JM, Gentile RC, Kotlovker D, Chung CY, Kim RY (2006) Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration: year 1 results of the FOCUS Study. Arch Ophthalmol 124:1532–1542PubMedCrossRefGoogle Scholar
  6. 6.
    Schmidt-Erfurth UM, Pruente C (2007) Management of neovascular age-related macular degeneration. Prog Retin Eye Res 26:437–451PubMedCrossRefGoogle Scholar
  7. 7.
    Oishi A, Mandai M, Nishida A, Hata M, Matsuki T, Kurimoto Y (2011) Remission and dropout rate of anti-VEGF therapy for age-related macular degeneration. Eur J Ophthalmol 21(6):777–782PubMedCrossRefGoogle Scholar
  8. 8.
    Coscas G, Coscas F, Vismara S, Zourdani A, Li Calzi CI (2009) OCT interpretation. In: Coscas G, Coscas F, Vismara S, Zourdani A, Li Calzi CI (eds) Optical coherence tomography in age-related macular degeneration. Springer-Verlag, Heidelberg, pp 97–170CrossRefGoogle Scholar
  9. 9.
    Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I, Drexler W, Wollstein G, Ishikawa H, Duker JS (2005) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112:1922–1935PubMedCrossRefGoogle Scholar
  10. 10.
    Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF (2003) Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 121:695–706PubMedCrossRefGoogle Scholar
  11. 11.
    Hayashi H, Yamashiro K, Tsujikawa A, Ota M, Otani A, Yoshimura N (2009) Association between foveal photoreceptor integrity and visual outcome in neovascular age-related macular degeneration. Am J Ophthalmol 148:83–89PubMedCrossRefGoogle Scholar
  12. 12.
    Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W (2003) Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 44:1696–1703PubMedCrossRefGoogle Scholar
  13. 13.
    Anger EM, Unterhuber A, Hermann B, Sattmann H, Schubert C, Morgan JE, Cowey A, Ahnelt PK, Drexler W (2004) Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp Eye Res 78:1117–1125PubMedCrossRefGoogle Scholar
  14. 14.
    Costa RA, Calucci D, Skaf M, Cardillo JA, Castro JC, Melo LA Jr, Martins MC, Kaiser PK (2004) Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest Ophthalmol Vis Sci 45:2399–2406PubMedCrossRefGoogle Scholar
  15. 15.
    Sayanagi K, Sharma S, Kaiser PK (2009) Photoreceptor status after antivascular endothelial growth factor therapy in exudative age-related macular degeneration. Br J Ophthalmol 93:622–626PubMedCrossRefGoogle Scholar
  16. 16.
    Landa G, Su E, Garcia PM, Seiple WH, Rosen RB (2011) Inner segment-outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of age-related macular degeneration. Retina 31:364–370PubMedCrossRefGoogle Scholar
  17. 17.
    Oishi A, Hata M, Shimozono M, Mandai M, Nishida A, Kurimoto Y (2010) The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am J Ophthalmol 150:27–32PubMedCrossRefGoogle Scholar
  18. 18.
    Coscas G, Coscas F, Vismara S, Zourdani A, Li Calzi CI (2009) Clinical features and natural history of AMD. In: Coscas G, Coscas F, Vismara S, Zourdani A, Li Calzi CI (eds) Optical coherance tomography in age-related macular degeneration. Springer-Verlag, Heidelberg, pp 171–274CrossRefGoogle Scholar
  19. 19.
    Coscas F, Coscas G, Souied E, Tick S, Soubrane G (2007) Optical coherence tomography identification of occult choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 144:592–599PubMedCrossRefGoogle Scholar
  20. 20.
    Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920PubMedCrossRefGoogle Scholar
  21. 21.
    Ogino K, Murakami T, Tsujikawa A, Miyamoto K, Sakamoto A, Ota M, Yoshimura N (2012) Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina 32(1):77–85PubMedCrossRefGoogle Scholar
  22. 22.
    Ota M, Nishijima K, Sakamoto A, Murakami T, Takayama K, Horii T, Yoshimura N (2010) Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology 117:1996–2002PubMedCrossRefGoogle Scholar
  23. 23.
    Shah AR, Del Priore LV (2009) Natural history of predominantly classic, minimally classic, and occult subgroups in exudative age-related macular degeneration. Ophthalmology 116:1901–1907PubMedCrossRefGoogle Scholar
  24. 24.
    Kaiser PK, Brown DM, Zhang K, Hudson HL, Holz FG, Shapiro H, Schneider S, Acharya NR (2007) Ranibizumab for predominantly classic neovascular age-related macular degeneration: subgroup analysis of first-year ANCHOR results. Am J Ophthalmol 144:850–857PubMedCrossRefGoogle Scholar
  25. 25.
    Boyer DS, Antoszyk AN, Awh CC, Bhisitkul RB, Shapiro H, Acharya NR (2007) Subgroup analysis of the MARINA study of ranibizumab in neovascular age-related macular degeneration. Ophthalmology 114:246–252PubMedCrossRefGoogle Scholar
  26. 26.
    Theodossiadis PG, Grigoropoulos VG, Theodossiadis GP (2011) The significance of the external limiting membrane in the recovery of photoreceptor layer after successful macular hole closure: a study by spectral domain optical coherence tomography. Ophthalmologica 225:176–184PubMedCrossRefGoogle Scholar
  27. 27.
    Wakabayashi T, Oshima Y, Fujimoto H, Murakami Y, Sakaguchi H, Kusaka S, Tano Y (2009) Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. Ophthalmology 116:519–528PubMedCrossRefGoogle Scholar
  28. 28.
    Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yumiko Akagi-Kurashige
    • 1
  • Akitaka Tsujikawa
    • 1
    Email author
  • Akio Oishi
    • 1
  • Sotaro Ooto
    • 1
  • Kenji Yamashiro
    • 1
  • Hiroshi Tamura
    • 1
  • Isao Nakata
    • 1
  • Naoko Ueda-Arakawa
    • 1
  • Nagahisa Yoshimura
    • 1
  1. 1.Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations