Advertisement

MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2

  • Jiping Cai
  • Xiaoyu Liu
  • Jinwei Cheng
  • You Li
  • Xiao Huang
  • Yuzhen Li
  • Xiaoye Ma
  • Hongyu Yu
  • Huimin Liu
  • Ruili WeiEmail author
Basic Science

Abstract

Background

Aberrant microRNA expression is implicated in cancer initiation and progression. We sought to identify dysregulated miRNAs in conjunctival mucosa-associated lymphoid tissue (MALT) lymphoma, and investigated their biological significance.

Methods

The profiles of miRNAs in conjunctival MALT lymphoma and normal adjacent tissues were investigated by microRNA microarray of four pairs of surgically removed conjunctival MALT lymphoma tissues and matched controls. The results of microarray were further confirmed in 14 paired conjunctival MALT lymphoma samples (including the former four pairs) using quantitative RT-PCR. The functional effect of miR-200 was examined further. A luciferase reporter assay was performed to confirm the predicted target.

Results

The microarray results revealed upregulated miR-150/155, and downregulated miR-184, miR-200a, b, c, and miR-205. These findings were confirmed by quantitative RT-PCR. Targetscan analysis suggested cyclin E2 as potential target of miR-200a, b, c. Luciferase reporter assay using vectors containing the 3’UTR of cyclin E2 showed that miR-200a, b, c could suppress luciferase activities. RT-PCR and immunoblotting studies revealed that overexpression of miR-200a, b, c reduced the mRNA and protein levels of cyclin E2 respectively.

Conclusions

We demonstrated that miRNAs were dysregulated in conjunctival MALT lymphoma, and dysregulation of the miR-200 family could be involved in the pathogenesis and progression of the disease.

Keywords

MicroRNA miR-200 MALT lymphoma Ocular adnexa Cyclin E2 

Notes

Potential conflict of interest

The authors declare no competing financial interests.

Supplementary material

417_2011_1885_MOESM1_ESM.doc (37 kb)
Supplementary Table 1 (DOC 37 kb)

References

  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846PubMedCrossRefGoogle Scholar
  3. 3.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  4. 4.
    Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479PubMedCrossRefGoogle Scholar
  5. 5.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833PubMedCrossRefGoogle Scholar
  6. 6.
    Hardman-Lea S, Kerr-Muir M, Wotherspoon AC, Green WT, Morell A, Isaacson PG (1994) Mucosa-associated lymphoid tissue lymphoma of the conjunctiva. Arch Ophthalmol 112:1207–1212PubMedCrossRefGoogle Scholar
  7. 7.
    Coupland SE, Krause L, Delecluse HJ, Anagnostopoule I, Foss HD, Hummel M, Bornfeld N, Lee WR, Stein H (1998) Lymphoproliferative lesions of the ocular adnexa: analysis of 112 cases. Ophthalmology 105:1430–1441PubMedCrossRefGoogle Scholar
  8. 8.
    Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632PubMedCrossRefGoogle Scholar
  9. 9.
    Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, Müller-Hermelink HK, Campo E, Braziel RM, Jaffe ES, Pan Z, Farinha P, Smith LM, Falini B, Banham AH, Rosenwald A, Staudt LM, Connors JM, Armitage JO, Chan WC (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282PubMedCrossRefGoogle Scholar
  10. 10.
    Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J, Wainscoat JS, Hatton CS (2007) MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121:1156–1161PubMedCrossRefGoogle Scholar
  11. 11.
    Lum AM, Wang BB, Li L, Channa N, Bartha G, Wabl M (2007) Retroviral activation of the mir-106a microRNA cistron in T lymphoma. Retrovirology 4:5PubMedCrossRefGoogle Scholar
  12. 12.
    Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG, Bertoni F (2007) Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 48:410–412PubMedCrossRefGoogle Scholar
  13. 13.
    Wang CL, Wang BB, Bartha G, Li L, Channa N, Klinger M, Killeen N, Wabl M (2006) Activation of an oncogenic microRNA cistron by provirus integration. Proc Natl Acad Sci U S A 103:18680–18684PubMedCrossRefGoogle Scholar
  14. 14.
    Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, vanden Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207:243–249PubMedCrossRefGoogle Scholar
  15. 15.
    Dykxhoorn DM (2010) MicroRNAs and metastasis: little RNAs go a long way. Cancer Res 70:6401–6406PubMedCrossRefGoogle Scholar
  16. 16.
    Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5:115–119PubMedCrossRefGoogle Scholar
  17. 17.
    Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907PubMedCrossRefGoogle Scholar
  18. 18.
    Cochrane DR, Howe EN, Spoelstra NS, Richer JK (2010) Loss of miR-200c: a marker of aggressiveness and chemoresistance in female reproductive cancers. J Oncol 2010:821717PubMedGoogle Scholar
  19. 19.
    Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S, Uozaki H, Takada K, Fukayama M (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70:4719–4727PubMedCrossRefGoogle Scholar
  20. 20.
    Yu J, Ohuchida K, Mizumoto K, Sato N, Kayashima T, Fujita H, Nakata K, Tanaka M (2010) MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation. Mol Cancer 9:169PubMedCrossRefGoogle Scholar
  21. 21.
    Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program:523–531Google Scholar
  22. 22.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefGoogle Scholar
  23. 23.
    Gao X, Gulari E, Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73:579–596PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu Q, Hong A, Sheng N, Zhang X, Matejko A, Jun KY, Srivannavit O, Gulari E, Gao X, Zhou X (2007) microParaflo biochip for nucleic acid and protein analysis. Methods Mol Biol 382:287–312PubMedCrossRefGoogle Scholar
  25. 25.
    Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443PubMedCrossRefGoogle Scholar
  26. 26.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  27. 27.
    Stommel JM, Wahl GM (2004) Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J 23:1547–1556PubMedCrossRefGoogle Scholar
  28. 28.
    Cui B, Johnson SP, Bullock N, Ali-Osman F, Bigner DD, Friedman HS (2009) Bifunctional DNA alkylator 1,3-bis(2-chloroethyl)-1-nitrosourea activates the ATR-Chk1 pathway independently of the mismatch repair pathway. Mol Pharmacol 75:1356–1363PubMedCrossRefGoogle Scholar
  29. 29.
    Coupland SE, White VA, Rootman J, Damato B, Finger PT (2009) A TNM-based staging system for ocular adnexal lymphomas. Arch Path Lab Med 133:1262–1267PubMedGoogle Scholar
  30. 30.
    Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M (1971) Report of the Committee on Hodgkin's Disease Staging Classification. Cancer Res 31:1860–1861PubMedGoogle Scholar
  31. 31.
    Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8:843–852PubMedCrossRefGoogle Scholar
  32. 32.
    Moroy T, Geisen C (2004) Cyclin E. Int J Biochem Cell Biol 36:1424–1439PubMedCrossRefGoogle Scholar
  33. 33.
    Sjö LD, Ralfkiaer E, Prause JU, Petersen JH, Madsen J, Pedersen NT, Heegaard S (2008) Increasing incidence of ophthalmic lymphoma in Denmark from 1980 to 2005. Invest Ophthalmol Vis Sci 49:3283–3288PubMedCrossRefGoogle Scholar
  34. 34.
    Decaudin D, de Cremoux P, Vincent-Salomon A, Dendale R, Rouic LL (2006) Ocular adnexal lymphoma: a review of clinicopathologic features and treatment options. Blood 108:1451–1460PubMedCrossRefGoogle Scholar
  35. 35.
    Shields CL, Shields JA (2004) Tumors of the conjunctiva and cornea. Surv Ophthalmol 49:3–24PubMedCrossRefGoogle Scholar
  36. 36.
    Shields CL, Shields JA, Carvalho C, Rundle P, Smith AF (2001) Conjunctival lymphoid tumors: clinical analysis of 117 cases and relationship to systemic lymphoma. Ophthalmology 108:979–984PubMedCrossRefGoogle Scholar
  37. 37.
    Zullo A, Hassan C, Cristofari F, Perri F, Morini S (2010) Gastric low-grade mucosal-associated lymphoid tissue-lymphoma: Helicobacter pylori and beyond. World J Gastrointest Oncol 2:181–186PubMedCrossRefGoogle Scholar
  38. 38.
    Stolte M (1992) Helicobacter pylore gastritis and gastric MALT-lymphoma. Lancet 339:745–746PubMedCrossRefGoogle Scholar
  39. 39.
    Bertoni F, Zucca E (2005) State-of-the-art therapeutics: marginal-zone lymphoma. J Clin Oncol 23:6415–6420PubMedCrossRefGoogle Scholar
  40. 40.
    Culpin RE, Proctor SJ, Angus B, Crosier S, Anderson JJ, Mainou-Fowler T (2010) A 9 series microRNA signature differentiates between germinal centre and activated B-cell-like diffuse large B-cell lymphoma cell lines. Int J Oncol 37:367–376PubMedGoogle Scholar
  41. 41.
    Lawrie CH, Chi J, Taylor S, Tramonti D, Ballabio E, Palazzo S, Saunders NJ, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS (2009) Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med 13:1248–1260PubMedCrossRefGoogle Scholar
  42. 42.
    Craig VJ, Cogliatti SB, Rehrauer H, Wündisch T, Müller A (2011) Epigenetic silencing of MicroRNA-203 dysregulates ABL1 expression and drives helicobacter-associated gastric lymphomagenesis. Cancer Res 71:3616–3624PubMedCrossRefGoogle Scholar
  43. 43.
    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801PubMedCrossRefGoogle Scholar
  44. 44.
    Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jiping Cai
    • 1
  • Xiaoyu Liu
    • 2
  • Jinwei Cheng
    • 1
  • You Li
    • 1
  • Xiao Huang
    • 1
  • Yuzhen Li
    • 1
  • Xiaoye Ma
    • 1
  • Hongyu Yu
    • 3
  • Huimin Liu
    • 3
  • Ruili Wei
    • 1
    Email author
  1. 1.Department of Ophthalmology of Shanghai Changzheng HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Biochemistry and Molecular BiologySecond Military Medical UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Pathology of Shanghai Changzheng HospitalSecond Military Medical UniversityShanghaiPeople’s Republic of China

Personalised recommendations