Proliferation of the ciliary epithelium with retinal neuronal and photoreceptor cell differentiation in human eyes with retinal detachment and proliferative vitreoretinopathy

  • Yvette Ducournau
  • Claude BoscherEmail author
  • Ron A. Adelman
  • Colette Guillaubey
  • Didier Schmidt-Morand
  • Jean-François Mosnier
  • Didier Ducournau



There is some in vitro evidence that the adult ciliary body might harbor an inactive population of stem/retinal progenitor cells (RPC), or that ciliary epithelial (CE) cells might have the capacity to trans-differentiate, which may result in a balance between neural and epithelial properties. We have reported alterations in the ciliary body (CB) and adjacent vitreous in vivo by endoscopic evaluation of human eyes with a history of retinal detachment (RD) and anterior proliferative vitreoretinopathy (PVR).


The present study examined with light microscopy three paraffin–embedded phthisic human eyes with RD and anterior PVR. One normal eye, exenterated for an orbital tumor, served as the control. All specimens were stained with hematoxilin and eosin safran (HES), and serial sections were immunostained with antibodies against EGFR, Ki67, CD133, NSE, rhodopsin, and GFAP.


We observed: (1) an intense proliferation and displacement of clusters of CE cells into the vitreous base in a “neurosphere-like” fashion; (2) differentiation of CE cells towards early and late neuronal [photoreceptor (PR)] lineages; and (3) strong staining of EGF and EGFR in the CE. Such proliferation, migration, and differentiation were not present in the CE of the control eye. GFAP staining was intensely positive in the three detached retinae, and was negative in the CE of eyes with RD, as well as in the retina of the control eye.


Our observations suggest that EGFR-positive CE cells in the adult human eye in vivo with RD and PVR form “neurosphere-like” structures; their differentiation seems to be directed towards the neural and photoreceptor lineage, and not towards glial formation. In the adult human eye, the CE in a pathological retinal environment such as RD might provide a spontaneous source of donor cells for retinal transplantation.


Ciliary margin Retinal detachment Proliferative vitreoretinopathy Endoscopic vitreoretinal surgery Retinal progenitor cells Retinal transplantation 


  1. 1.
    Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, Van der Kooy D (2000) Retinal stem cells in the adult mammalian eye. Science 287:2032–2036PubMedCrossRefGoogle Scholar
  2. 2.
    Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521PubMedCrossRefGoogle Scholar
  3. 3.
    Fischer AJ, Reh TA (2000) Indentification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol 220:197–210PubMedCrossRefGoogle Scholar
  4. 4.
    Fischer AJ, Hendrickson A, Reh TA (2001) Immunocytochemical characterization of cysts in the peripheral retina and pars plana of the adult primate. Invest Ophthalmol Vis Sci 42:3256–3263PubMedGoogle Scholar
  5. 5.
    Moshiri A, Reh TA (2004) Persistent progenitors at the retinal margin of ptc+/- mice. J Neurosci 24:229–237PubMedCrossRefGoogle Scholar
  6. 6.
    Das AV, James J, Rahnenführer J, Thoreson WB, Bhattacharya S, Zhao X, Ahmad I (2005) Retinal properties and potential of the adult mammalian ciliary epithelium stem cells. Vision Research 45:1653–1666PubMedCrossRefGoogle Scholar
  7. 7.
    Inoue Y, Yanagi Y, Tamaki Y, Uchida S, Kawase Y, Araie M, Okochi H (2005) Clonogenic analysis of ciliary epithelial derived retinal progenitor cells in rabbits. Exp Eye Res 81(4):437–445PubMedCrossRefGoogle Scholar
  8. 8.
    Gu P, Harwood LJ, Zhang X, Wylie M, Curry WJ, Cogliati T (2007) Isolation of retinal progenitor and stem cells from the porcine eye. Mol Vis 13:1045–1057PubMedGoogle Scholar
  9. 9.
    Hollyfield JG (1968) Differential addition of cells to the retina in Rana pipiens tadpoles. Dev Biol 18:163–179PubMedCrossRefGoogle Scholar
  10. 10.
    Coles BL, Angénieux B, Inoue T, Del Rio K, Spence JR, McInnes RR, Arsenijevic Y, Van der Kooy D (2004) Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 101(44):15772–15777PubMedCrossRefGoogle Scholar
  11. 11.
    Mayer EJ, Carter DA, Ren Y, Hugues EH, Rice CM, Halfpenny CA, Scolding NJ, Dick AD (2005) Neural progenitor cells from postmortem adult human retina. Br J Ophthalmol 89(1):102–106PubMedCrossRefGoogle Scholar
  12. 12.
    Coles BL, Horsford DJ, Mclnnes R, Van der Kooy D (2006) Loss of retinal progenitor cells leads to an increase in the retinal stem cell population in vivo. Eur J Neurosci 23:75–82PubMedCrossRefGoogle Scholar
  13. 13.
    Klassen H, Zjaeian B, Kirov I, Young MJ, Schwartz PH (2007) Isolation of retinal progenitor cells from postmortem human tissue and comparison with autologous brain progenitors. J Neurosci Res 77:334–343CrossRefGoogle Scholar
  14. 14.
    Xu H, Drina D, Sta I, Kielczewski JL, Valenta DF, Pease ME, Zack DJ, Quigley HA (2007) Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci 48:1674–1682PubMedCrossRefGoogle Scholar
  15. 15.
    MacNeil A, Pearson RA, MacLaren RE, Smith AJ, Sowden JC, Ali RR (2007) Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 10:2430–2438CrossRefGoogle Scholar
  16. 16.
    Wetts R, Serbedzija GN, Fraser SE (1989) Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol 136:254–263PubMedCrossRefGoogle Scholar
  17. 17.
    Perron M, Kanekar S, Vetter ML, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199:185–200PubMedCrossRefGoogle Scholar
  18. 18.
    Moe M, Kolberg R, Sandberg C, Vilk-Mo E, Olstorn H, Varghese M, Langmoen I, Nicolaissen B (2009) A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Experimental Eye Research: 88(1):30–38CrossRefGoogle Scholar
  19. 19.
    Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LML, Baker SJ, Sorrentino BP, Dyer MA (2009) Cells previously identified as retinal stem cells are pigmented epithelial cells. PNAS 106(16):6685–6690PubMedCrossRefGoogle Scholar
  20. 20.
    Bathia B, Singhal S, Lawrence J, Khaw P, Limb A (2009) Distribution Of Muller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp Eye Res 89:373–382CrossRefGoogle Scholar
  21. 21.
    Boscher C (2007) Endoscopy. In: Kuhn F (ed) Ocular traumatology. Springer, Berlin, pp 473-484, section II, chapter 2.20 Google Scholar
  22. 22.
    Boscher C (2001) Endoscopy for anterior proliferative vitreoretinopathy. AAO subspecialty day, Retina: A Retina Odyssey, pp 151-157Google Scholar
  23. 23.
    Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D (2008) New insights into the cell biology of hematopoietic progenitors by studying Prominin-1 (CD133). Cells Tissues Organs 188(1–2):127–138PubMedCrossRefGoogle Scholar
  24. 24.
    Mizrak D, Brittan M, Alison MR (2008) CD133: molecule of the moment. J Pathol 214(1):3–9PubMedCrossRefGoogle Scholar
  25. 25.
    Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J, Sun YE (2008) CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA 105(3):1026–1031PubMedCrossRefGoogle Scholar
  26. 26.
    Carter DA, Dick AD, Mayer EJ (2009) CD 133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF). BMC Opthtalmology 9:1. doi: 10.1186/1471-2415-9-1 CrossRefGoogle Scholar
  27. 27.
    Weigmann A, Corbeil D, Hellwig A, Huttner WB (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA 94:12425–12430PubMedCrossRefGoogle Scholar
  28. 28.
    Simmons PJ, Peault B, Buck DW, Huttner WB (2000) The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem 275:5512–5520PubMedCrossRefGoogle Scholar
  29. 29.
    Corbeil D, Röper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91PubMedCrossRefGoogle Scholar
  30. 30.
    Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB, Denis Corbeil D (2004) Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. Journal of Cell Science 117:4301–4311PubMedCrossRefGoogle Scholar
  31. 31.
    Maw MA, Corbeil D, Koch J, Hellwig A, Wilson-Wheeler JC, Bridges RJ, Kumaramanickavel G, John S, Nancarrow D, Röper K, Weigmann A, Huttner WB, Denton MJ (2000) A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration. Hum Mol Genet 9:27–34PubMedCrossRefGoogle Scholar
  32. 32.
    Sun Y, Kong W, Falk A, Hu J, Zhou L, Pollard S, Smith A (2009) CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS One 4(5):e5498, Epub 2009 May 11PubMedCrossRefGoogle Scholar
  33. 33.
    Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252PubMedCrossRefGoogle Scholar
  34. 34.
    Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina. J Neurosci 22:9387–9398PubMedGoogle Scholar
  35. 35.
    Wan J, Zheng H, Xiao H, She ZJ, Zhou GM (2007) Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363(2):347–354PubMedCrossRefGoogle Scholar
  36. 36.
    Bernados RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial müller glia that function as retinal stem cells. J Neurosci 27(26):7028–7040CrossRefGoogle Scholar
  37. 37.
    Monnin J, Morand-Villeneuve N, Michel G, Hicks D, Versaux-Botteri C (2007) Production of neurospheres from mammalian Müller cells in culture. Neurosci Lett 421(1):22–26PubMedCrossRefGoogle Scholar
  38. 38.
    Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043PubMedCrossRefGoogle Scholar
  39. 39.
    Draberova E, Del Valle L, Gordon J, Markova V, Smejkalova B, Bertrand L, de Chadarevian JP, Agamanolis DP, Legido A, Khalili K, Dráber P, Katsetos C (2008) Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic protein and nestin in midgestational human fetal astrocytes: implications for phenotypic identity. J Neuropathol Exp Neurol 67(4):341–354PubMedCrossRefGoogle Scholar
  40. 40.
    Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult sub-ventricular zone. J Neurosci 22:629–634PubMedGoogle Scholar
  41. 41.
    Zhao X, Das AV, Soto-Leon F, Ahmad I (2005) Growth factor-responsive progenitors in the postnatal mammalian retina. Dev Dyn 232(2):349–358PubMedCrossRefGoogle Scholar
  42. 42.
    Rapaport DH, Wong LL, Wood ED, Yasumura D, La Vail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474(2):304–324PubMedCrossRefGoogle Scholar
  43. 43.
    MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116):203–207PubMedCrossRefGoogle Scholar
  44. 44.
    Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 103:12769–12774PubMedCrossRefGoogle Scholar
  45. 45.
    Martins RAP, Pearson RA (2008) Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res 1192:37–60PubMedCrossRefGoogle Scholar
  46. 46.
    McFarlane S, Zuber ME, Holt CE (1998) A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 125(20):3967–3975PubMedGoogle Scholar
  47. 47.
    Fischer AJ, Reh TA (2003) Growth factors induce neurogenesis in the ciliary body. Dev Biol 259:225–240PubMedCrossRefGoogle Scholar
  48. 48.
    Giordano F, De Marzo A, Vetrini F, Marigo V (2007) Fibroblast growth factor and epidermal growth factor differently affect differentiation of murine retinal stem cells in vitro. Mol Vis 2(13):1842–1850Google Scholar
  49. 49.
    Reh TA, Tully T (1986) Regulation of Tyrosine hydroxylase-containing amacrine cell number in larval frog retina. Dev Biol 114:463–469PubMedCrossRefGoogle Scholar
  50. 50.
    Ooto S, Akagi T, Kageyam R, Mandai M, Honda Y, Takahasi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci USA 101:13654–13659CrossRefGoogle Scholar
  51. 51.
    Nickerson PE, Emsley JG, Myers T, Clarke DB (2007) Proliferation and expression of progenitor and mature retinal phenotypes in the adult mammalian ciliary body after retinal ganglion cell injury. Invest Ophthalmol Vis Sci 48(11):5266–5275PubMedCrossRefGoogle Scholar
  52. 52.
    Nishiguchi KM, Kaneko H, Nakamura M, Kachi S, Terasaki H (2008) Identification of photoreceptor precursors in the pars plana during ocular development and after retinal injury. Invest Ophthalmol Vis Sci 49(1):422–428PubMedCrossRefGoogle Scholar
  53. 53.
    Jens FK, Kiilgaard J, Prause U (2007) Subretinal posterior pole injury induces selective proliferation of RPE cells in the periphery in vivo studies in pigs. Invest Ophthalmol Vis Sci 48(1):355–360CrossRefGoogle Scholar
  54. 54.
    Moe M, Varghese M, Danilov A, Westerlund U, Ram-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen I (2005) Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128:2189–2199PubMedCrossRefGoogle Scholar
  55. 55.
    Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129(2):490–502PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yvette Ducournau
    • 1
  • Claude Boscher
    • 2
    Email author
  • Ron A. Adelman
    • 3
    • 8
  • Colette Guillaubey
    • 4
  • Didier Schmidt-Morand
    • 5
  • Jean-François Mosnier
    • 1
    • 7
  • Didier Ducournau
    • 6
  1. 1.Service d’Anatomie et Cytologie PathologiquesHôpital G et R LaennecCHU de NantesFrance
  2. 2.American Hospital of ParisNeuilly sur SeineFrance
  3. 3.Department of Ophthalmology and Visual ScienceYale University School of MedicineNew HavenUSA
  4. 4.Institut d’Anatomie Pathologie du ForezSaint-Etienne cedex 1France
  5. 5.Ecole Vétérinaire de Nantes, Atlanpôle - La ChantrerieNantesFrance
  6. 6.Clinique SourdilleNantes cedex 3France
  7. 7.Service d’Anatomie Pathologique BCentre Hospitalo-Universitaire de Nantes, Hopital G & R LaennecNantes cedex 1France
  8. 8.Yale University Eye CenterNew HavenUSA

Personalised recommendations