Advertisement

Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs

  • Roland AckermannEmail author
  • Kathleen S. Kunert
  • Robert Kammel
  • Sabine Bischoff
  • Stephanie C. Bühren
  • Harald Schubert
  • Marcus Blum
  • Stefan Nolte
Refractive Surgery

Abstract

Background

To investigate the long-term stability and possible cataractogenesis after femtosecond laser treatment of the crystalline lens.

Methods

The crystalline lenses of ten Göttingen minipigs® underwent femtosecond laser treatment. During a subsequent 1-year follow-up, the pigs were monitored by means of slit-lamp examination of the anterior segment and Scheimpflug imaging of the lens.

Results

No laser-induced cataractogenesis was observed during the 1-year follow-up. The laser pattern showed a stable appearance under all examination devices.

Conclusion

Femtosecond laser treatment seems to be no trigger for cataract formation. Moreover, the long-term stability of the laser pattern makes it suitable for applications such as presbyopia treatment.

Keywords

Cataract Crystalline lens Femtosecond laser Presbyopia 

Notes

Acknowledgement

This work is supported by the German Federal Ministry of Education and Research (Grant-IDs: 13 N8831, 13 N8835). We are also grateful to Dr. Matthias Reich for his assistance during the preparation of this study.

References

  1. 1.
    Nolte S (2002) Micromachining. In: Fermann ME, Galvanauskas A, Sucha G (eds) Ultrafast lasers: technology and applications. Marcel Dekker, New York, pp 359–394Google Scholar
  2. 2.
    Lubatschowski H (2010) Ultrafast lasers in ophthalmology. Physics Procedia 5:637–640CrossRefGoogle Scholar
  3. 3.
    Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Applied Physics B 81:1015–1047CrossRefGoogle Scholar
  4. 4.
    Ripken T, Oberheide U, Heisterkamp A, Ertmer W, Gerten G, Lubatschowski H (2004) Investigations for the correction of presbyopia by fs-laser induced cuts. Proc SPIE 5314:27–35CrossRefGoogle Scholar
  5. 5.
    Nagy Z, Takacs A, Filkorn T, Sarayba M (2009) Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J Refract Surg 25:1053–1060PubMedCrossRefGoogle Scholar
  6. 6.
    Cangelosi G, McDonald MB, Morgan KS (1985) Cataract induction in rabbits with the Nd:YAG laser. Invest Ophthalmol Vis Sci 26:1037–1040PubMedGoogle Scholar
  7. 7.
    Gwon A, Fankhauser F, Puliafito C, Gruber L, Berns M (1995) Focal laser photophacoablation of normal and cataractous lenses in rabbits: preliminary report. J Cataract Refract Surg 21:282–286PubMedGoogle Scholar
  8. 8.
    Vodicka P, Hlucilova J, Klima J, Prochazka R, Ourednik J, Ourednik V, Motlik J (2008) The minipig as an animal model in biomedical stem cell research. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press, Totowa NJ, pp 241–248CrossRefGoogle Scholar
  9. 9.
    Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198PubMedCrossRefGoogle Scholar
  10. 10.
    Kunert KS, Blum M, Reich M, Dick M, Russmann C (2009) Effect of a suction device for femtosecond laser on anterior chamber depth and crystalline lens position measured by OCT. J Refract Surg 25:1005–1011PubMedCrossRefGoogle Scholar
  11. 11.
    Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu S (1993) The lens opacities classification system III. Arch Ophthalmol 111:831–836PubMedGoogle Scholar
  12. 12.
    Krueger RR, Kuszak J, Lubatschowski H, Myers RI, Ripken T, Heisterkamp A (2005) First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis. J Cataract Refract Surg 31:2386–2394PubMedCrossRefGoogle Scholar
  13. 13.
    Schumacher S, Fromm M, Oberheide U, Bock P, Imbschweiler I, Hoffmann H, Beinecke A, Gerten G, Wegener A, Lubatschowski H (2009) Femtosecond-lentotomy treatment: six month follow up of in vivo treated rabbit lenses. Proc SPIE 7373:73730HCrossRefGoogle Scholar
  14. 14.
    Köhn F, Sharifi AR, Simianer H (2007) Modeling the growth of the Goettingen minipig. J Anim Sci 85:84–92PubMedCrossRefGoogle Scholar
  15. 15.
    Truscott RJW (2005) Age-related nuclear cataract — oxidation is the key. Exp Eye Res 80:709–725PubMedCrossRefGoogle Scholar
  16. 16.
    Keenan J, Orr DF, Pierscionek BK (2008) Patterns of crystallin distribution in porcine eye lenses. Mol Vis 14:1245–1253PubMedGoogle Scholar
  17. 17.
    Waeser AC (2009) Zur Charakterisierung der Kristallinstruktur der Schweinelinse als Modell für die humane Linse. PhD thesis. Rheinische Friedrich-Wilhelms-Universität Bonn, BonnGoogle Scholar
  18. 18.
    Gwon A (2006) Lens regeneration in mammals: a review. Surv Ophthalmol 51:51–62PubMedCrossRefGoogle Scholar
  19. 19.
    Vos JJ, van Norren D (2004) Thermal cataract, from furnaces to lasers. Clin Exp Optom 87:372–376PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Roland Ackermann
    • 1
    Email author
  • Kathleen S. Kunert
    • 2
  • Robert Kammel
    • 1
  • Sabine Bischoff
    • 3
  • Stephanie C. Bühren
    • 1
  • Harald Schubert
    • 3
  • Marcus Blum
    • 2
  • Stefan Nolte
    • 1
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Department of OphthalmologyHELIOS Klinikum Erfurt GmbHErfurtGermany
  3. 3.Institute of Laboratory Animal ScienceFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations