Retinal blood flow velocity measured by retinal function imaging in retinitis pigmentosa

  • Sven C. Beutelspacher
  • Nermin Serbecic
  • Hila Barash
  • Zvia Burgansky-Eliash
  • Amiram Grinvald
  • Hermann Krastel
  • Jost B. Jonas
Medical Ophthalmology



To measure the retinal blood flow velocity in patients with retinitis pigmentosa using the retinal function imaging technique.


The clinical observational investigation included a study group of five eyes of five patients (age: 55.7 ± 8.6 years) with retinitis pigmentosa (RP) and a control group of five eyes of five healthy subjects. We used a randomly chosen eye of the RP patients, and compared its results to the normal subjects using a mixed linear model, correcting for heart rate, age, and gender.


The mean blood velocity in the narrow retinal veins (1.7 ± 0.35 cm/s versus 3.0 ± 0.35 cm/s; P < 0.001) and wide retinal veins (1.5 ± 0.35 cm/s versus 3.1 ± 0.30 cm/s; P < 0.001) was significantly lower in the study group than in the control group not correcting for heart rate, age or gender. Correspondingly, the arterial blood flow velocity was significantly lower in the study group than in the control group for the narrow arterial vessels (2.3 ± 0.55 versus 4.2 ± 0.5; P = 0.006) and for the wide retinal arteries (2.5 ± 1.05 cm/s versus 4.8 ± 1.0 cm/s; P < 0.001).


Using the retinal function imaging technology revealed significantly lower retinal blood flow velocities in the small and large retinal vessels in patients with retinitis pigmentosa than in healthy subjects. This corresponds with the known decrease in the retinal vessel diameters as observed upon ophthalmoscopy in patients with retinitis pigmentosa. Retinal function imaging technology may hold promise for measurements of retinal blood flow parameters.


Retinitis pigmentosa Retinal blood flow measurement Retinal function imaging 


  1. 1.
    Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80:384–401PubMedCrossRefGoogle Scholar
  2. 2.
    Grunwald JE, Maguire AM, Dupont J (1996) Retinal hemodynamics in retinitis pigmentosa. Am J Ophthalmol 122:502–508PubMedGoogle Scholar
  3. 3.
    Akyol N, Kukner S, Celiker U, Koyu H, Luleci C (1995) Decreased retinal blood flow in retinitis pigmentosa. Can J Ophthalmol 30:28–32PubMedGoogle Scholar
  4. 4.
    Langham ME, Kramer T (1990) Decreased choroidal blood flow associated with retinitis pigmentosa. Eye (Lond) 4(Pt 2):374–381CrossRefGoogle Scholar
  5. 5.
    Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27:284–330PubMedCrossRefGoogle Scholar
  6. 6.
    Marc RE, Jones BW, Watt CB, Strettoi E (2003) Neural remodeling in retinal degeneration. Prog Retin Eye Res 22:607–655PubMedCrossRefGoogle Scholar
  7. 7.
    Gao YQ, Danciger M, Longmuir R, Piriev NI, Zhao DY, Heckenlively JR, Fishman GA, Weleber RG, Jacobson SG, Stone EM, Farber DB (1999) Screening of the gene encoding the alpha'-subunit of cone cGMP-PDE in patients with retinal degenerations. Invest Ophthalmol Vis Sci 40:1818–1822PubMedGoogle Scholar
  8. 8.
    Wolf S, Postgens H, Bertram B, Schulte K, Teping C, Reim M (1991) Hemodynamic findings in patients with retinitis pigmentosa. Klin Monbl Augenheilkd 199:325–329PubMedCrossRefGoogle Scholar
  9. 9.
    Cellini M, Santiago L, Versura P, Caramazza R (2002) Plasma levels of endothelin-1 in retinitis pigmentosa. Ophthalmologica 216:265–268PubMedCrossRefGoogle Scholar
  10. 10.
    Landa G, Garcia PM, Rosen RB (2009) Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica 223:155–161PubMedCrossRefGoogle Scholar
  11. 11.
    Landa G, Rosen RB (2010) New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). Br J Ophthalmol 94:54–58PubMedCrossRefGoogle Scholar
  12. 12.
    Izhaky D, Nelson DA, Burgansky-Eliash Z, Grinvald A (2009) Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals. Jpn J Ophthalmol 53:345–351PubMedCrossRefGoogle Scholar
  13. 13.
    Christian HB, Izhaky D, Burgansky-Eliash Z, Nelson DA, Barak A, Lowenstein A , Grinvald A (2010) High reproducibility of retinal blood flow velocity measurements using the retinal function imager. ARVO Abstract No 1054/A617Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sven C. Beutelspacher
    • 1
    • 4
  • Nermin Serbecic
    • 2
  • Hila Barash
    • 3
  • Zvia Burgansky-Eliash
    • 3
    • 5
  • Amiram Grinvald
    • 3
  • Hermann Krastel
    • 1
  • Jost B. Jonas
    • 1
  1. 1.Medical Faculty Mannheim of the Ruprecht-Karls-University HeidelbergMannheimGermany
  2. 2.University Eye Hospital ViennaViennaAustria
  3. 3.Optical ImagingRehovotIsrael
  4. 4.Universitäts-Augenklinik, Theodor-Kutzer-Ufer 1–3MannheimGermany
  5. 5.Department of OphthalmologyThe Edith Wolfson Medical Center, Sackler Faculty of Medicine, Tel-Aviv UniversityHolonIsrael

Personalised recommendations