Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma

  • Ruojin Ren
  • Ningli Wang
  • Xiaojun Zhang
  • Tongtong Cui
  • Jost B. Jonas
Glaucoma

Abstract

Background

The aim of this work is to prospectively assess the relationship between trans-laminar cribrosa pressure difference and neuroretinal rim area as morphologic surrogate of glaucomatous optic nerve damage.

Methods

The study included 22 patients with high-pressure glaucoma, 13 patients with normal-pressure glaucoma, and 17 subjects with ocular hypertension. All participants underwent a standardized ophthalmologic examination including confocal laser scanning tomography of the optic nerve head and computerized perimetry and a neurologic examination including measurement of the lumbar cerebrospinal fluid (CSF) pressure. The trans-lamina cribrosa pressure difference was calculated as difference of intraocular pressure minus lumbar CSF pressure.

Results

Neuroretinal rim area (p = 0.006; correlation coefficient r = −0.38) and mean visual field defect (p = 0.008; r = 0.38) were significantly associated with trans-lamina cribrosa pressure difference. The probability of error was lower (i.e., the p value were lower) and the correlation coefficients were higher for the associations between rim area/visual field defect with trans-lamina cribrosa pressure difference than for the associations between rim area/visual field defect and intraocular pressure or lumbar CSF pressure.

Conclusions

The trans-lamina cribrosa pressure difference as the difference of intraocular pressure minus the lumbar CSF pressure was the main pressure parameter associated with the amount of glaucomatous optic nerve damage. This may suggest that the CSF pressure as trans-lamina cribrosa counter pressure against the intraocular pressure may play some role in the pathogenesis of glaucomatous optic neuropathy.

Keywords

Cerebrospinal fluid pressure Trans-lamina cribrosa pressure difference Neuroretinal rim Ocular hypertension Normal-pressure glaucoma Lamina cribrosa Intraocular pressure Blood pressure 

Supplementary material

417_2011_1657_MOESM1_ESM.doc (27 kb)
ESM 1(DOC 27 kb)

References

  1. 1.
    Quigley HA (1993) Open-angle glaucoma. N Engl J Med 328:1097–1106PubMedCrossRefGoogle Scholar
  2. 2.
    Yücel Y, Gupta N (2008) Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog Brain Res 173:465–478PubMedCrossRefGoogle Scholar
  3. 3.
    Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, Yang Z, EMGT Group (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972PubMedCrossRefGoogle Scholar
  4. 4.
    Jonas JB (2007) Intraocular pressure during headstand. Ophthalmology 114:1791PubMedCrossRefGoogle Scholar
  5. 5.
    Jonas JB (2007) Trans-lamina cribrosa pressure difference. Arch Ophthalmol 125:431PubMedCrossRefGoogle Scholar
  6. 6.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ (1995) The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci 36:1163–1172PubMedGoogle Scholar
  7. 7.
    Morgan WH, Chauhan BC, Yu DY, Cringle SJ, Alder VA, House PH (2002) Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci 43:3236–3242PubMedGoogle Scholar
  8. 8.
    Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195PubMedCrossRefGoogle Scholar
  9. 9.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24:39–73PubMedCrossRefGoogle Scholar
  10. 10.
    Morgan WH, Yu DY, Alder VA et al (1998) The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci 39:1419–1428PubMedGoogle Scholar
  11. 11.
    Volkov VV (1976) Essential element of the glaucomatous process neglected in clinical practice. Oftalmol Zh 31:500–504PubMedGoogle Scholar
  12. 12.
    Yablonski M, Ritch R, Pokorny KS (1979) Effect of decreased intracranial pressure on optic disc. Invest Ophthalmol Vis Sci 18(Suppl):165Google Scholar
  13. 13.
    Jonas JB, Budde WM (1999) Optic cup deepening spatially correlated with optic nerve damage in focal normal-pressure glaucoma. J Glaucoma 8:227–231PubMedCrossRefGoogle Scholar
  14. 14.
    Jonas JB, Budde WM (2000) Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma. Ophthalmology 107:704–711PubMedCrossRefGoogle Scholar
  15. 15.
    Jonas JB, Berenshtein E, Holbach L (2004) Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci 45:2660–2665PubMedCrossRefGoogle Scholar
  16. 16.
    Morgan WH, Yu DY, Balaratnasingam C (2008) The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma 17:408–413PubMedCrossRefGoogle Scholar
  17. 17.
    Berdahl JP, Allingham RR, Johnson DH (2008) Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology 115:763–768PubMedCrossRefGoogle Scholar
  18. 18.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR (2008) Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci 49:5412–5418PubMedCrossRefGoogle Scholar
  19. 19.
    Chang TC, Singh K (2009) Glaucomatous disease in patients with normal pressure hydrocephalus. J Glaucoma 18:243–246PubMedCrossRefGoogle Scholar
  20. 20.
    Jonas JB, Hayreh SS, Tao Y (2011) Thickness of the lamina cribrosa and peripapillary sclera in rhesus monkeys with non-glaucomatous or glaucomatous optic neuropathy. Acta Ophthalmol 2011 (in print)Google Scholar
  21. 21.
    Lee AG, Pless M, Falardeau J, Capozzoli T, Wall M, Kardon RH (2005) The use of acetazolamide in idiopathic intracranial hypertension during pregnancy. Am J Ophthalmol 139:855–859PubMedCrossRefGoogle Scholar
  22. 22.
    Jonas JB, Bergua A, Schmitz-Valckenberg P, Papastathopoulos KI, Budde WM (2000) Ranking of optic disc variables for detection of glaucoma damage. Invest Ophthalmol Vis Sci 41:1764–1773PubMedGoogle Scholar
  23. 23.
    Jonas JB, Schiro D (1994) Localised wedge-shaped defects of the retinal nerve fibre layer in glaucoma. Br J Ophthalmol 78:285–290PubMedCrossRefGoogle Scholar
  24. 24.
    Jonas JB, Gusek GC, Naumann GO (1988) Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 29:1151–1158PubMedGoogle Scholar
  25. 25.
    Jonas JB, Schiro D (1993) Visibility of the normal retinal nerve fiber layer correlated with rim width and vessel caliber. Graefes Arch Clin Exp Ophthalmol 231:207–211PubMedCrossRefGoogle Scholar
  26. 26.
    Jonas JB, Nguyen XN, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30:1599–1603PubMedGoogle Scholar
  27. 27.
    Kohlhaas M, Boehm AG, Spoerl E, Pürsten A, Grein HJ, Pillunat LE (2006) Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Arch Ophthalmol 124:471–476PubMedCrossRefGoogle Scholar
  28. 28.
    Gilland O (1969) Normal cerebrospinal-fluid pressure. N Engl J Med 280:904–905PubMedGoogle Scholar
  29. 29.
    Ren R, Jonas JB, Tian G, Zhen Y, Ma K, Li S, Wang H, Li B, Zhang X, Wang N (2010) Cerebrospinal fluid pressure in glaucoma. A prospective study. Ophthalmology 117:259–266PubMedCrossRefGoogle Scholar
  30. 30.
    Jonas JB (2003) Ophthalmodynamometric measurement of orbital tissue pressure in thyroid-associated orbitopathy. Acta Ophthalmol 82:239CrossRefGoogle Scholar
  31. 31.
    Lenfeldt N, Koskinen LO, Bergenheim AT, Malm J, Eklund A (2007) CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology 68:155–158PubMedCrossRefGoogle Scholar
  32. 32.
    Magnaes B (1976) Body position and cerebrospinal fluid pressure. Part 2: clinical studies on orthostatic pressure and the hydrostatic indifferent point. J Neurosurg 44:698–705PubMedCrossRefGoogle Scholar
  33. 33.
    Hayreh SS (2009) Cerebrospinal fluid pressure and glaucomatous optic disc cupping. Graefes Arch Clin Exp Ophthalmol 247:721–724PubMedCrossRefGoogle Scholar
  34. 34.
    Tsukahara S, Hasaka O, Hoshi H, Kawashima C, Whittle IR, Phillips CI (1996) Pathological cupping in normal pressure glaucoma is probably not due to low CSF pressure. Acta Ophthalmol Scand 74:646PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ruojin Ren
    • 1
    • 2
  • Ningli Wang
    • 2
  • Xiaojun Zhang
    • 3
  • Tongtong Cui
    • 1
  • Jost B. Jonas
    • 1
    • 4
  1. 1.Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  2. 2.Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  3. 3.Department of Neurology, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
  4. 4.Department of OphthalmologyMedical Faculty Mannheim of the Ruprecht-Karls-University HeidelbergMannheimGermany

Personalised recommendations