Shifting trends in in vitro antibiotic susceptibilities for common bacterial conjunctival isolates in the last decade at the New York Eye and Ear Infirmary

  • Adebukola Adebayo
  • Jignesh G. Parikh
  • Steven A. McCormick
  • Mahendra K. Shah
  • Remedios S. Huerto
  • Guopei Yu
  • Tatyana Milman
Miscellaneous

Abstract

Background

Bacterial conjunctivitis is one of the most common forms of ocular diseases worldwide. The purpose of this study is to determine the most common pathogens causing bacterial conjunctivitis, their in vitro susceptibility to existing antibiotics, and the changing trends in bacterial resistance to antibiotics over the last decade.

Methods

Records of all conjunctival bacterial cultures performed at the NYEEI Microbiology Laboratory from 1 January 1997 through 30 June 2008 were reviewed. Data on species of bacterial isolates and their in vitro susceptibility to the antibiotics tetracycline, trimethaprim/sulfamethoxazole (TMP/SMZ), imipenem, fluoroquinolones (ciprofloxacin, moxifloxacin, gatifloxacin), aminoglycosides (gentamicin, tobramycin), erythromycin, cefazolin, oxacillin, and vancomycin were collected.

Results

Review of records yielded 20,180 conjunctival bacterial cultures, 60.1% of which were culture-positive. Of the culture-positive isolates, 76.6% were gram-positive and 23.4% were gram-negative pathogens. Staphylococcus aureus was the most common gram-positive pathogen isolated, and also the most commonly isolated pathogen overall. Haemophilus influenzae was the most common gram-negative pathogen. A significant increase in the percentage of methicillin-resistant Staphylococcus aureus (MRSA) was observed in the course of 11.5 years. The highest levels of antibiotic resistance were observed to tetracycline, erythromycin, and TMP/SMZ. Gram-positive isolates were least resistant to vancomycin, and gram-negative isolates were least resistant to imipenem. The lowest broad-spectrum antibiotic resistance was observed in the case of moxifloxacin, gatifloxacin, and aminoglycosides.

Conclusion

Staphylococcus aureus is the most common pathogen in bacterial conjunctivitis. Conjunctival bacterial isolates demonstrated high levels of resistance to tetracycline, erythromycin and TMP/SMZ. Moxifloxacin and gatifloxacin appear to be currently the best choice for empirical broad-spectrum coverage. Vancomycin is the best antibiotic for MRSA coverage.

Keywords

Shifting trends Antibiotic susceptibilities Bacterial conjunctival isolates 

References

  1. 1.
    McDonnell PJ (1988) How do general practitioners manage eye diseases in the community? Br J Ophthalmol 72:733–736CrossRefPubMedGoogle Scholar
  2. 2.
    Hovding G (2008) Acute bacterial conjunctivitis. Acta Ophthalmol 86(1):5–17CrossRefPubMedGoogle Scholar
  3. 3.
    Ostler HB (1993) Conjunctival infections and inflammations. In: Ostler HB (ed) Diseases of the External Eye and Adnexa: A Text and Atlas. Williams & Wilkins, Baltimore, pp 67–136Google Scholar
  4. 4.
    Tarabishy AB, Jeng BH (2008) Bacterial conjunctivitis: a review for internists. Cleve Clin J Med 75(7):507–512CrossRefGoogle Scholar
  5. 5.
    Morrow GL, Abbott RL (1998) Conjunctivitis. Am Fam Physician 57:528–529Google Scholar
  6. 6.
    Sheikh A, Hurwitz B (2008) Bacterial conjunctivitis. In: Roy FH, Fraunfelder FW, Fraunfelder FT (eds) Roy and Fraunfelder’s Current Ocular Therapy, 6th edn. Elsevier, Philadelphia, pp 332–334Google Scholar
  7. 7.
    Leibowitz HM (1991) Antibacterial effectiveness of ciprofloxacin 0.3% ophthalmic solution in the treatment of bacterial conjunctivitis. Am J Ophthalmol 112(4):29–33Google Scholar
  8. 8.
    Gigliotti F, Hendley JO, Morgan J, Michaels R, Dickens M, Lohr J (1984) Efficacy of topical antibiotic therapy in acute conjunctivitis in children. J Pediatr 104(4):623–626CrossRefPubMedGoogle Scholar
  9. 9.
    Jensen HG, Felix C, In Vitro Antibiotic Testing Group (1998) In vitro antibiotic susceptibilities of ocular isolates in North and South America. Cornea 17(1):79–87CrossRefPubMedGoogle Scholar
  10. 10.
    Alvarenga LS, Ginsberg B, Mannis MJ (2008) Bacterial conjunctivitis. In: Tasman W, Jaeger EA (eds) Duane’s Clinical Ophthalmology. Vol 4. Lippincott, Williams & Wilkins, Philadelphia, pp 1–17Google Scholar
  11. 11.
    Chalita MR, Hofling-Lima AL, Paranhos A Jr, Schor P, Belfort R Jr (2004) Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during a period of 15 years. Am J Ophthalmol 137:43–51CrossRefPubMedGoogle Scholar
  12. 12.
    Cavuoto K, Zutshi D, Karp CL, Miller D, Feuer W (2008) Update on bacterial conjunctivitis in South Florida. Ophthalmology 115(1):51–56CrossRefPubMedGoogle Scholar
  13. 13.
    Alexandrakis G, Alfonso EC, Miller D (2000) Shifting trends in bacterial keratitis in South Florida and emerging resistance to fluoroquinolones. Ophthalmology 107(8):1497–1502CrossRefPubMedGoogle Scholar
  14. 14.
    Suh DW (2008) Escherichia coli. In: Roy FH, Fraunfelder FW, Fraunfelder FT (eds) Roy and Fraunfelder’s Current Ocular Therapy, 6th edn. Elsevier, Philadelphia, pp 28–29Google Scholar
  15. 15.
    Jansen HG, Perry HD, Donnenfeld ED (2008) Antibacterials. In: Albert D, Miller J, Azar D, Blodi B (eds) Albert & Jakobiec’s Principles and Practice of Ophthalmology, vol 1, 3rd edn. Elsevier, Philadelphia, pp 207–214Google Scholar
  16. 16.
    to hereGarat M, Moser CL, Alonso-Tarres C, Martin-Baranera M, Alberdi A (2005) Intracameral cefazolin to prevent endophthalmitis in cataract surgery: 3-year retrospective study. J Cataract Refract Surg 31(11):2230–2234CrossRefPubMedGoogle Scholar
  17. 17.
    Asbell PA, Sahm DF, Shaw M, Draghi DC, Brown NP (2008) Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J Cataract Refract Surg 34(5):814–818CrossRefPubMedGoogle Scholar
  18. 18.
    Hautala N, Koskela M, Hautala T (2008) Major age group-specific differences in conjunctival bacteria and evolution of antimicrobial resistance revealed by laboratory data surveillance. Curr Eye Res 33(11):907–911CrossRefPubMedGoogle Scholar
  19. 19.
    Freidlin J, Acharya N, Lietman TM, Cevallos V, Whitcher JP, Margolis TP (2007) Spectrum of eye disease caused by methicillin-resistant Staphylococcus aureus. Am J Ophthalmol 144(2):313–315CrossRefPubMedGoogle Scholar
  20. 20.
    Sakoulas G, Moellering RC Jr (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46(S5):S360–S367CrossRefPubMedGoogle Scholar
  21. 21.
    Baum J, Barza M (2000) The evolution of antibiotic therapy for bacterial conjunctivitis and keratitis: 1970–2000. Cornea 19(5):659–672CrossRefPubMedGoogle Scholar
  22. 22.
    Block SL, Hedrick J, Tyler R et al (2000) Increasing bacterial resistance in pediatric acute conjunctivitis (1997–1998). Antimicrob Agents Chemother 44:1650–1654CrossRefPubMedGoogle Scholar
  23. 23.
    Sheikh A, Hurwitz B (2005) Topical antibiotics for acute bacterial conjunctivitis: Cochrane systematic review and meta-analysis update. Br J Gen Pract 55:962–964PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Adebukola Adebayo
    • 1
    • 2
    • 3
  • Jignesh G. Parikh
    • 1
    • 2
  • Steven A. McCormick
    • 1
    • 2
  • Mahendra K. Shah
    • 1
    • 2
  • Remedios S. Huerto
    • 1
    • 2
    • 4
  • Guopei Yu
    • 1
    • 2
  • Tatyana Milman
    • 1
    • 2
  1. 1.The New York Eye and Ear InfirmaryNew YorkUSA
  2. 2.New York Medical CollegeValhallaUSA
  3. 3.Albert Einstein College of MedicineBronxUSA
  4. 4.St. Luke’s Medical CenterQuezon CityPhilippines

Personalised recommendations