Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats

Basic Science



Diabetic retinopathy is a common complication of diabetes, which is caused by injury to retinal microvasculature and neurons. Mesenchymal stem cells (MSCs), which proved to have multi-linkage differentiation capacity, including endothelial cells and neurons, might be a promising cell therapy resource. The current pilot study was performed using the streptozotocin (STZ) rat model of diabetic retinopathy injected intravenously with human adipose-derived mesenchymal stem cells (AMSCs) in an effort to investigate the potency and possible therapeutic effects of AMSCs.


Four experimental groups of Wistar rats were included in the current study: an untreated control group of STZ diabetic rats (n = 10), a normal non-diabetic control group (n = 20), an AMSC therapy group of STZ diabetic rats (n = 50), and a sham group of STZ diabetic rats (n = 50). Blood glucose levels were monitored closely. Immunofluorescence was used to study AMSC distribution and differentiation. The integrity of the blood-retinal barrier (BRB) was evaluated by Evans blue dye infusion to evaluate the therapeutic effects.


After 1 week of transplantation, a significant reduction in blood glucose levels was observed in the AMSC therapy group relative to the sham group. BRB integrity was also improved, as less Evans blue dye leakage was observed. Donor cells were observed in the retinas of therapy group rats, and they expressed rhodopsin and glial fibrillary acidic protein (GFAP), specific markers for photoreceptors and astrocytes, respectively.


Taken together, the results of the current study suggest that AMSCs may improve the integrity of the BRB in diabetic rats by differentiation into photoreceptor and glial-like cells in the retina and by reducing the blood glucose levels. Furthermore, the data presented herein provide evidence that AMSCs may serve as a promising therapeutic approach for diabetic retinopathy.


Diabetic retinopathy (DR) Adipose-derived mesenchymal stem cells (AMSCs) Blood-retinal barrier (BRB) 


  1. 1.
    Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL 3rd, Klein R (2004) Retinopathy in diabetes. Diab Care 27(Suppl 1):S84–S87CrossRefGoogle Scholar
  2. 2.
    Mason JO 3rd, Colagross CT, Haleman T, Fuller JJ, White MF, Feist RM, Emond TL, McGwin G Jr (2005) Visual outcome and risk factors for light perception and no light perception vision after vitrectomy for diabetic retinopathy. Am J Ophthalmol 140:231–235PubMedGoogle Scholar
  3. 3.
    Strom C, Sander B, Klemp K, Aiello LP, Lund-Andersen H, Larsen M (2005) Effect of ruboxistaurin on blood-retinal barrier permeability in relation to severity of leakage in diabetic macular edema. Invest Ophthalmol Vis Sci 46:3855–3858CrossRefPubMedGoogle Scholar
  4. 4.
    Kunisaki M, Bursell SE, Clermont AC, Ishii H, Ballas LM, Jirousek MR, Umeda F, Nawata H, King GL (1995) Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Physiol 269:E239–E246PubMedGoogle Scholar
  5. 5.
    Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, Mooradian AD, Spinowitz BS (1999) Design and baseline characteristics for the aminoguanidine clinical trial in overt type 2 diabetic nephropathy (ACTION II). Control Clin Trials 20:493–510CrossRefPubMedGoogle Scholar
  6. 6.
    Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290CrossRefPubMedGoogle Scholar
  7. 7.
    Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW (2002) Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 47(Suppl 2):S253–S262CrossRefPubMedGoogle Scholar
  8. 8.
    Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332:370–379CrossRefPubMedGoogle Scholar
  9. 9.
    Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379CrossRefPubMedGoogle Scholar
  10. 10.
    Meyer JS, Katz ML, Maruniak JA, Kirk MD (2006) Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells 24:274–283CrossRefPubMedGoogle Scholar
  11. 11.
    Xu Q, Qaum T, Adamis AP (2001) Sensitive blood-retinal barrier breakdown quantitation using Evans blue. Invest Ophthalmol Vis Sci 42:789–794PubMedGoogle Scholar
  12. 12.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMedGoogle Scholar
  14. 14.
    Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI, Friedlander M (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276CrossRefPubMedGoogle Scholar
  15. 15.
    Tomita M, Adachi Y, Yamada H, Takahashi K, Kiuchi K, Oyaizu H, Ikebukuro K, Kaneda H, Matsumura M, Ikehara S (2002) Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina. Stem Cells 20:279–283CrossRefPubMedGoogle Scholar
  16. 16.
    Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010CrossRefPubMedGoogle Scholar
  17. 17.
    Di Rocco G, Iachininoto MG, Tritarelli A, Straino S, Zacheo A, Germani A, Crea F, Capogrossi MC (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119:2945–2952CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, Zhao RC (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 16:695–706CrossRefPubMedGoogle Scholar
  19. 19.
    Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA (2008) Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant 14:631–640CrossRefPubMedGoogle Scholar
  20. 20.
    Wu XH, Liu CP, Xu KF, Mao XD, Zhu J, Jiang JJ, Cui D, Zhang M, Xu Y, Liu C (2007) Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World J Gastroenterol 13:3342–3349PubMedGoogle Scholar
  21. 21.
    Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ (2006) Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 103:17438–17443CrossRefPubMedGoogle Scholar
  22. 22.
    Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770CrossRefPubMedGoogle Scholar
  23. 23.
    Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135–1140CrossRefPubMedGoogle Scholar
  24. 24.
    Yamashita H (1997) Molecular pathogenesis of diabetic retinopathy. Nippon Rinsho 55(Suppl):960–965PubMedGoogle Scholar
  25. 25.
    Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424CrossRefPubMedGoogle Scholar
  26. 26.
    Arnhold S, Klein H, Klinz FJ, Absenger Y, Schmidt A, Schinkothe T, Brixius K, Kozlowski J, Desai B, Bloch W, Addicks K (2006) Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur J Cell Biol 85:551–565CrossRefPubMedGoogle Scholar
  27. 27.
    Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA (2002) Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 43:2428–2434PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of OphthalmologyPeking Union Medical College HospitalBeijingChina
  2. 2.Institute of Basic Medical Sciences and Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical College, Center of Excellence in Tissue EngineeringBeijingChina
  3. 3.Chinese Academy of Medical SciencePeking Union Medical College, Center of Excellence in Tissue EngineeringBeijingChina

Personalised recommendations