Multimodal fundus imaging in Best vitelliform macular dystrophy

  • Daniela C. Ferrara
  • Rogério A. CostaEmail author
  • Stephen Tsang
  • Daniela Calucci
  • Rodrigo Jorge
  • K. Bailey Freund
Retinal Disorders



Best vitelliform macular dystrophy (BVMD) is a rare autosomal dominant retinal disease of highly variable phenotypic expression. Interpretations of disease mechanisms based on histopathology, electrophysiology, genetic analysis, and retinal imaging are somewhat discordant in fundamental issues such as the location and extension of primary retinal changes. Herein we describe the morphological macular features in patients with BVMD undergoing simultaneous multimodal fundus imaging and compare to those of normal age-matched subjects.


Comparative study including seven patients with BVMD (14 eyes) and seven age-matched healthy subjects (14 eyes). All participants were submitted to complete ophthalmological examination, fundus photography, and standardized multimodal fundus imaging protocol including Fourier-domain optical coherence tomography (Fd-OCT) combined with near-infrared reflectance and blue-light fundus autofluorescence (FAF).


In two eyes in the “subclinical” stage, Fd-OCT revealed thickening of the middle highly reflective layer (HRL) localized between the photoreceptors’ inner/outer segments junction (inner-HRL) and RPE/Bruch’s membrane reflective complex (outer-HRL) throughout the macula. In one eye in the “vitelliform” stage, a homogeneous hyper-reflective material on Fd-OCT was observed between the middle-HRL and outer-HRL; this material presented increased fluorescence on FAF. The outer nuclear layer (ONL) was thinned in the central macula and subretinal fluid was not identified in these earlier disease stages. In patients of “pseudohypopyon” (two eyes), “vitelliruptive” (eight eyes) and “atrophic” (one eye) stages, Fd-OCT revealed a variety of changes in the middle- and inner-HRLs and thinning of ONL. These changes were found to be associated with the level of visual acuity observed. Thickening of the middle-HRL was observed beyond the limits of the clinically evident macular lesion in all eyes.


Multimodal fundus imaging demonstrated thickening of the reflective layer corresponding to the photoreceptors’ outer segments throughout the macula with no subretinal fluid accumulation as the earliest detectable feature in BVMD. Changes detected in the photoreceptors’ reflective layers (middle- and inner- HRLs) and ONL thinning seemed to be progressive with direct implications for the level of visual acuity impairment observed among the different stages of the disease.


Best disease Fourier-domain Fundus autofluorescence Infrared Retinal pigment epithelium Spectral Tomography, optical coherence Vitelliform macular dystrophy 


  1. 1.
    Maloney WF, Robertson DM, Duboff SM (1977) Hereditary vitelliform macular degeneration: variable fundus findings within a single pedigree. Arch Ophthalmol 95:979–983PubMedGoogle Scholar
  2. 2.
    Gass JDM (1997) Stereoscopic atlas of macular diseases, diagnosis and treatment. Mosby, St. LouisGoogle Scholar
  3. 3.
    Stone EM, Nichols BE, Streb LM, Kimura AE, Sheffield VC (1992) Genetic linkage of vitelliform macular degeneration (Best’s disease) to chromosome 11q13. Nat Genet 1:246–250CrossRefPubMedGoogle Scholar
  4. 4.
    Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, Sandgren O, Forsman K, Holmgren G, Andreasson S, Vujic M, Bergen AAB, McGarty-Dugan V, Figueroa D, Austin CP, Metzker ML, Caskey CT, Wadelius C (1998) Identification of the gene responsible for Best macular dystrophy. Nat Genet 19:241–247CrossRefPubMedGoogle Scholar
  5. 5.
    Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best disease). Hum Mol Genet 7:1517–1525CrossRefPubMedGoogle Scholar
  6. 6.
    Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97:12758–12763CrossRefPubMedGoogle Scholar
  7. 7.
    Bakall B, McLaughlin P, Stanton JB, Zhang Y, Hartzell HC, Marmorstein LY, Marmorstein AD (2008) Bestrophin-2 is involved in the generation of intraocular pressure. Invest Ophthalmol Vis Sci 49:1563–1570CrossRefPubMedGoogle Scholar
  8. 8.
    Yu K, Qu Z, Cui Y, Hartzell HC (2007) Chloride channel activity of bestrophin mutants associated with mild or late-onset macular degeneration. Invest Ophthalmol Vis Sci 48:4694–4705CrossRefPubMedGoogle Scholar
  9. 9.
    Boon CJF, Klevering BJ, Leroy BP, Hoyng CB, Keunen JEE, den Hollander AI (2009) The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28:187–205CrossRefPubMedGoogle Scholar
  10. 10.
    Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J (2003) Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 278:41114–41125CrossRefPubMedGoogle Scholar
  11. 11.
    Marmorstein AD, Kinnick TR (2007) Focus on molecules: Bestrophin (Best-1). Exp Eye Res 85:423–424CrossRefPubMedGoogle Scholar
  12. 12.
    Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013CrossRefPubMedGoogle Scholar
  13. 13.
    Yu K, Cui Y, Hartzell HC (2006) The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function. Invest Ophthalmol Vis Sci 47:4956–4961CrossRefPubMedGoogle Scholar
  14. 14.
    Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to Best disease and other retinopathies. Physiol Rev 88:639–672CrossRefPubMedGoogle Scholar
  15. 15.
    Marmorstein AD, Cross HE, Peachey NS (2009) Functional roles of bestrophins in ocular epithelia. Prog Retin Eye Res 28:206–226CrossRefPubMedGoogle Scholar
  16. 16.
    Best F (1905) Über eine hereditäre Makulaaffektion. Z F Augenheilk 13:199–212Google Scholar
  17. 17.
    Deutman AF (1969) Electro-oculography in families with vitelliform dystrophy of the fovea. Detection of the carrier state. Arch Ophthalmol 81:305–316PubMedGoogle Scholar
  18. 18.
    Cross HE, Bard L (1974) Electro-oculography in Best macular dystrophy. Am J Ophthalmol 77:46–50PubMedGoogle Scholar
  19. 19.
    Glybina IV, Frank RN (2006) Localization of multifocal electroretinogram abnormalities to the lesion site: findings in a family with Best disease. Arch Ophthalmol 124:1593–1600CrossRefPubMedGoogle Scholar
  20. 20.
    Boon CJF, Theelen T, Hoefsloot EH, van Schooneveld MJ, Keunen JEE, Cremers FPM, Klevering BJ, Hoyng CB (2009) Clinical and molecular genetic analysis of Best vitelliform macular dystrophy. Retina 29:835–847CrossRefPubMedGoogle Scholar
  21. 21.
    Renner AB, Tillack H, Kraus H, Kramer F, Mohr N, Weber BHF, Foerster MH, Kellner U (2005) Late onset is common in Best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 112:586–592CrossRefPubMedGoogle Scholar
  22. 22.
    Wabbels B, Preising MN, Kretschmann U, Demmler A, Lorenz B (2006) Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 244:1453–1466CrossRefPubMedGoogle Scholar
  23. 23.
    Boon CJ, Klevering BJ, den Hollander AI, Zonneveld MN, Theelen T, Cremers FPM, Hoyng CB (2007) Clinical and genetic heterogeneity in multifocal vitelliform dystrophy. Arch Ophthalmol 125:1100–1106CrossRefPubMedGoogle Scholar
  24. 24.
    Mohler CW, Fine SL (1981) Long-term evaluation of patients with Best vitelliform dystrophy. Ophthalmology 88:688–692PubMedGoogle Scholar
  25. 25.
    Boon CJ, Klevering JB, Keunen JE, Hoyng CB, Theelen T (2008) Fundus autofluorescence imaging of retinal dystrophies. Vis Res 48:2569–2577CrossRefPubMedGoogle Scholar
  26. 26.
    Querques G, Regenbogen M, Soubrane G, Souied EH (2009) High-resolution spectral domain optical coherence tomography findings in multifocal vitelliform macular dystrophy. Surv Ophthalmol 54:311–316CrossRefPubMedGoogle Scholar
  27. 27.
    Noble KG, Scher BM, Carr RE (1978) Polymorphous presentations in vitelliform macular dystrophy: subretinal neovascularization and central choroidal atrophy. Br J Ophthalmol 62:561–570CrossRefPubMedGoogle Scholar
  28. 28.
    Frangieh GT, Green WR, Fine SL (1982) A histopathologic study of Best macular dystrophy. Arch Ophthalmol 100:1115–1121PubMedGoogle Scholar
  29. 29.
    O’Gorman S, Flaherty WA, Fishman GA, Berson EL (1988) Histopathologic findings in Best vitelliform macular dystrophy. Arch Ophthalmol 106:1261–1268PubMedGoogle Scholar
  30. 30.
    Blodi CF, Stone EM (1990) Best vitelliform dystrophy. Ophthalmic Paediatr Genet 11:49–59PubMedGoogle Scholar
  31. 31.
    Fishman GA, Baca W, Alexander KR, Derlacki DJ, Glenn AM, Viana M (1993) Visual acuity in patients with Best vitelliform macular dystrophy. Ophthalmology 100:1665–1670PubMedGoogle Scholar
  32. 32.
    Chung MM, Oh KT, Streb LM, Kimura AE, Stone EM (2001) Visual outcome following subretinal hemorrhage in Best disease. Retina 21:575–580CrossRefPubMedGoogle Scholar
  33. 33.
    Andrade RE, Farah ME, Cardillo JA, Hofling-Lima AL, Uno F, Costa RA (2002) Optical coherence tomography in choroidal neovascular membrane associated with Best vitelliform dystrophy. Acta Ophthalmol Scand 80:216–218CrossRefPubMedGoogle Scholar
  34. 34.
    Andrade RE, Farah ME, Costa RA (2003) Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in Best disease. Am J Ophthalmol 136:1179–1181CrossRefPubMedGoogle Scholar
  35. 35.
    Leu J, Schrage NF, Degenring RF (2007) Choroidal neovascularization secondary to Best disease in a 13-year-old boy treated by intravitreal bevacizumab. Graefes Arch Clin Exp Ophthalmol 245:1723–1725CrossRefPubMedGoogle Scholar
  36. 36.
    Querques G, Bocco MC, Soubrane G, Souied EH (2008) Intravitreal ranibizumab (Lucentis) for choroidal neovascularization associated with vitelliform macular dystrophy. Acta Ophthalmol 86:694–695CrossRefPubMedGoogle Scholar
  37. 37.
    Bakall B, Marknell T, Ingvast S, Koisti MJ, Sandgren O, Li W, Bergen AAB, Andreasson S, Rosenberg T, Petrukhin K, Wadelius C (1999) The mutation spectrum of the bestrophin protein—functional implications. Hum Genet 104:383–389CrossRefPubMedGoogle Scholar
  38. 38.
    Kramer F, White K, Pauleikhoff D, Gehrig A, Passmore L, Rivera A, Rudolph G, Kellner U, Andrassi M, Lorenz B, Rohrschneider K, Blankenagel A, Jurklies B, Schilling H, Schutt F, Holz FG, Weber BH (2000) Mutations in the VMD2 gene are associated with juvenile-onset vitelliform macular dystrophy (Best disease) and adult-onset vitelliform macular dystrophy but not age-related macular degeneration. Eur J Hum Genet 8:286–292CrossRefPubMedGoogle Scholar
  39. 39.
    Brown M, Marmor M, Vaegan ZE, Brigell M, Bach M, ISCEV (2006) ISCEV standard for clinical electro-oculography (EOG). Doc Ophthalmol 113:205–212CrossRefPubMedGoogle Scholar
  40. 40.
    Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I, Chen R, Duker JS, Schuman JS, Fujimoto JG (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579CrossRefPubMedGoogle Scholar
  41. 41.
    Mullins RF, Kuehn MH, Faidley EA, Syed NA, Stone EM (2007) Differential macular and peripheral expression of bestrophin in human eyes and its implication for Best disease. Invest Ophthalmol Vis Sci 48:3372–3380CrossRefPubMedGoogle Scholar
  42. 42.
    Deguchi J, Yamamoto A, Yoshimori T, Sugasawa K, Moriyama Y, Futai M, Suzuki T, Kato K, Uyama M, Tashiro Y (1994) Acidification of phagosomes and degradation of rod outer segments in rat retinal pigment epithelium. Invest Ophthalmol Vis Sci 35:568–579PubMedGoogle Scholar
  43. 43.
    Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578:633–640CrossRefPubMedGoogle Scholar
  44. 44.
    Karl MO, Kroeger W, Wimmers S, Milenkovic VM, Valtink M, Engelmann K, Strauss O (2008) Endogenous Gas6 and Ca2+-channel activation modulate phagocytosis by retinal pigment epithelium. Cell Signal 20:1159–1168CrossRefPubMedGoogle Scholar
  45. 45.
    Rosenthal R, Heimann H, Agostini H, Martin G, Hansen LL, Strauss O (2007) Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease. Mol Vis 13:443–456PubMedGoogle Scholar
  46. 46.
    Weingeist T, Kobrin J, Watzke R (1982) Histopathology of Best macular dystrophy. Arch Ophthalmol 100:1108–1114PubMedGoogle Scholar
  47. 47.
    Mullins RF, Oh KT, Heffron E, Hageman G, Stone EM (2005) Late development of vitelliform lesions and flecks in a patient with Best disease. Arch Ophthalmol 123:1588–1594CrossRefPubMedGoogle Scholar
  48. 48.
    Bakall B, Radu RA, Stanton JB, Burke JM, McKay BS, Wadelius C, Mullins RF, Stone EM, Travis GH, Marmorstein AD (2007) Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Exp Eye Res 85:34–43CrossRefPubMedGoogle Scholar
  49. 49.
    Pianta MJ, Aleman TS, Cideciyan AV, Sunness JS, Li Y, Campochiaro BA, Campochiaro PA, Zack DJ, Stone EM, Jacobson SG (2003) In vivo micropathology of Best macular dystrophy with optical coherence tomography. Exp Eye Res 76:203–211CrossRefPubMedGoogle Scholar
  50. 50.
    Men G, Batioglu F, Ozkan SS, Huban A, Ozdamar Y, Aslan O (2004) Best vitelliform macular dystrophy with pseudohypopyon: an optical coherence tomography study. Am J Ophthalmol 137:963–965CrossRefPubMedGoogle Scholar
  51. 51.
    Vedantham V, Ramasamy K (2005) Optical coherence tomography in Best disease: an observational case report. Am J Ophthalmol 139:351–353CrossRefPubMedGoogle Scholar
  52. 52.
    Spaide RF, Noble K, Morgan A, Freund KB (2006) Vitelliform macular dystrophy. Ophthalmology 113:1392–1400CrossRefPubMedGoogle Scholar
  53. 53.
    Spaide RF (2008) Autofluorescence from the outer retina and subretinal space. Hypothesis and review. Retina 28:5–35CrossRefPubMedGoogle Scholar
  54. 54.
    Querques G, Regenbogen M, Quijano C, Delphin N, Soubrane G, Souied EH (2008) High-definition optical coherence tomography features in vitelliform macular dystrophy. Am J Ophthalmol 146:501–507CrossRefPubMedGoogle Scholar
  55. 55.
    Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA, Izatt JA, Choi S, Laut S, Werner JS (2005) Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 13:8532–8546CrossRefPubMedGoogle Scholar
  56. 56.
    Verhoeff FH (1903) A hitherto undescribed membrane of the eye and its significance. Boston Med Surg J 149:456Google Scholar
  57. 57.
    Maia-Lopes S, Silva ED, Reis A, Silva MF, Mateus C, Castelo-Branco M (2008) Retinal function in Best macular dystrophy: relationship between electrophysiological, pychophysical, and structural measures of damage. Invest Ophthalmol Vis Sci 49:5553–5560CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Daniela C. Ferrara
    • 1
    • 2
  • Rogério A. Costa
    • 1
    • 2
    • 3
    Email author
  • Stephen Tsang
    • 4
  • Daniela Calucci
    • 2
    • 3
  • Rodrigo Jorge
    • 1
  • K. Bailey Freund
    • 5
  1. 1.Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.MACIMA – Macular Imaging and Treatment DivisionHospital de Olhos de AraraquaraAraraquaraBrazil
  3. 3.CBCV – Centro Brasileiro de Ciências VisuaisBelo HorizonteBrazil
  4. 4.Department of Ophthalmology and Pathology, and Department of Ophthalmology and Cell BiologyColumbia UniversityNew YorkUSA
  5. 5.Vitreous Retina Macula Consultants of New YorkNew YorkUSA

Personalised recommendations