Controlled cyclophotocoagulation with the 940 nm laser for primary open angle glaucoma in African eyes

  • Paul-Rolf Preußner
  • Faustin Ngounou
  • Gabriel Kouogan



“Controlled cyclophotocoagulation” is a real-time dosage control which reduces the complications of transscleral cyclophotocoagulation to a negligible amount in European eyes. Applied to a few African eyes, however, the method failed. Obviously, the physical parameters of the laser procedure need adjustment to African eyes.

Method and material

After theoretical investigations and tests in African cadaver eyes, 940 nm laser wavelength instead of 810 nm and a different fiber coupling had solved the problem of physical differences between European and African eyes to a large extent. The method was then applied to 272 eyes of 188 patients with primary open-angle glaucoma, of which it was possible to follow 26 eyes of 18 patients for at least 1 year. Median age of the patients was 63.7 years, with the youngest 16.8 years, the oldest 88.8 years. Either 16 or 24 laser spots were applied at random. If both eyes were treated, they were treated in the same session.


The average intraocular pressure (IOP) reduction after 1 year was 7.5 mmHg, with average glaucoma drug reduction from 1.5 to 1.2 substances. At least one pop spot occurred in 32% of the eyes. No statistically significant difference between 16 and 24 spots was found. No severe complications such as intraocular bleeding, hypotony <7 mmHg, choroidal detachment or phthisis were observed.


Controlled cyclophotocoagulation with the 940 nm laser is a safe method which can be applied as the first-choice treatment to African primary open-angle glaucoma eyes. Individual IOP prediction, however, is very difficult.


Cyclophotocoagulation Wavelength dependence Real-time control Radiation transport 


  1. 1.
    Weekers R, Lavergne G, Watillon M, Gilson M, Legros AM (1961) Effects of photocoagulation of the ciliary body upon ocular tension. Am J Ophthalmol 52:156–163PubMedGoogle Scholar
  2. 2.
    Beckman H, Kinoshita A, Rota AN, Sugar HS (1972) Transscleral ruby laser irradiation of the ciliary body in the treatment of intractable glaucoma. Trans Am Acad Ophthal Otol 76:423–436Google Scholar
  3. 3.
    Beckman H, Sugar HS (1973) Neodymium laser cyclophotocoagulation. Arch Ophthalmol 90:27–28PubMedGoogle Scholar
  4. 4.
    Hampton C, Shields MB, Miller KN, Blasini M (1990) Evaluation of a protocol for transscleral neodymium:YAG cyclophotocoagulation in one hundred patients. Ophthalmology 97:910–917PubMedGoogle Scholar
  5. 5.
    Brooks AMV, Gillies WE (1991) The use of YAG cyclophotocoagulation to lower pressure in advanced glaucoma. Aust NZ J Ophthal 19:207–210CrossRefGoogle Scholar
  6. 6.
    Heidenkummer HP, Mangouritsas G, Kampik A (1991) Klinische Anwendungen und Ergebnisse der transskleralen Nd:YAG-Zyklophotokoagulation bei therapierefraktarem Glaucom. Klin Monbl Augenheilk 198:174–180CrossRefGoogle Scholar
  7. 7.
    Wright MM, Grajewski AL, Feuer WJ (1991) Nd:YAG cyclophotocoagulation: outcome of treatment for uncontrolled glaucoma. Ophthalmic Surg 22:279–283PubMedGoogle Scholar
  8. 8.
    Immonen IJ, Puska P, Raitta C (1994) Transscleral contact krypton laser cyclophotocoagulation for treatment of glaucoma. Ophthalmology 101:876–882PubMedGoogle Scholar
  9. 9.
    Brancato R, Carassa RG, Bettin P, Fiori M, Trabucchi G (1995) Contact transscleral cyclophotocoagulation with diode laser in refractory glaucoma. Eur J Ophthalmol 5:32–39PubMedGoogle Scholar
  10. 10.
    Hamard P, Kopel J, Valtot F, Quesnot S, Hamard H, Haut J (1995) Traitement des glaucomes réfractaires par cyclophotocoagulation au laser à diode. J Fr Ophthalmol 18:447–454Google Scholar
  11. 11.
    Hawkins TA, Stewart WC (1993) One-year results of semiconductor transscleral cyclophotocoagulation in patients with glaucoma. Arch Ophthalmol 111:488–491PubMedGoogle Scholar
  12. 12.
    Hennis HL, Stewart WC (1992) Semiconductor diode laser transscleral cyclophotocoagulation in patients with glaucoma. Am J Ophthalmol 113:81–85PubMedGoogle Scholar
  13. 13.
    Omofolasade K, Gaasterland DE, Pollack IP, Enger CL (1996) Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. Ophthalmology 103:1294–1302Google Scholar
  14. 14.
    Maus M, Katz LJ (1990) Choroidal detachment, flat anterior chamber, and hypotony as complications of neodymium:YAG laser cyclophotocoagulation. Ophthalmology 97:69–72PubMedGoogle Scholar
  15. 15.
    Smith RS, Stein MN (1969) Ocular hazards of transscleral laser radiation: II. Intraocular injury produced by ruby and neodymium lasers. Am J Ophthalmol 67:100–110PubMedGoogle Scholar
  16. 16.
    Hamada M, Suzuki R, Kurimoto S (1991) Transient complete visual loss during transscleral cyclophotocoagulation. Jap J Clin Ophthalmol 45:949–951Google Scholar
  17. 17.
    Edwards DP, Brown SV, Higginbotham E (1989) Sympathetic ophthalmia following Nd:YAG cycloptherapy. Ophthalmic Surg 20:544–546Google Scholar
  18. 18.
    Bechrakis NE, Müller-Stolzenburg NW, Helbig H (1994) Sympathetic ophthalmia following laser cyclocoagulation. Arch Ophthalmol 112:80–84PubMedGoogle Scholar
  19. 19.
    Geyer O, Neudorfer M, Lazar M (1993) Retinal detachment as a complication of neodymium:yttrium:aluminium garnet laser cyclocoagulation. Ann Ophthalmol 25:170–172PubMedGoogle Scholar
  20. 20.
    Johnson SM (1998) Neurotrophic corneal defects after diode laser cycloablation. Am J Ophthalmol 126:725–727CrossRefPubMedGoogle Scholar
  21. 21.
    Sabry K, Vernon SA (1999) Scleral perforation following transscleral cyclodiode. Br J Ophthalmol 83:502–503Google Scholar
  22. 22.
    Egbert PR, Fiadoyor S, Budenz DL, Dadzie P, Byrd S (2001) Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma. Arch Ophthalmol 119:345–350PubMedGoogle Scholar
  23. 23.
    Kramp K, Vick HP, Guthoff R (2002) Transscleral diode laser contact cyclophotocoagulation in the treatment of different glaucomas, also as primary surgery. Graefes Arch Clin Exp Ophthalmol 240:698–703CrossRefPubMedGoogle Scholar
  24. 24.
    Federman JL, Ando F, Schubert HD, Eagle RC (1987) Contact laser for transscleral photocoagulation. Ophthalmic Surg 18:183–184PubMedGoogle Scholar
  25. 25.
    Allingham RR, de Kater AW, Bellows AR, Hsu J (1990) Probe placement and power levels in contact transscleral neodymium:YAG cyclo-photocoagulation. Arch Ophthalmol 108:738–742PubMedGoogle Scholar
  26. 26.
    England C, Van der Zypen E, Fankhauser F, Kwasniewska S (1988) A comparison of optical methods used for transscleral cyclophotocoagulation in rabbit eyes produced with the Nd:YAG laser: a morphological physical and clinical analysis. Lasers Light Ophthalmol 2:87–102Google Scholar
  27. 27.
    Kwasniewska S, Fankhauser F, Van der Zypen E, Rol P, Henchoz PD, England C (1988) Acute effects following transscleral contact irradiation of the ciliary body and the retina/choroid with the cw Nd:YAG laser. Lasers Light Ophthalmol 2:25–34Google Scholar
  28. 28.
    Schuman JS, Noecker RJ, Puliafito CA, Jacobsson JJ, Shepps GJ, Wang N (1991) Energy levels and probe placement in contact transscleral semiconductor diode laser cyclophotocoagulation in human cadaver eyes. Arch Ophthalmol 109:1534–1538PubMedGoogle Scholar
  29. 29.
    Takahashi H, Okisaka S (1991) Safety and effectiveness of contact trans-scleral cyclophotocoagulation with continuous-wave Nd:YAG laser. Jap J Clin Ophthalmol 45:1233–1237Google Scholar
  30. 30.
    Roider J, Schmidt-Erfurth U, El-Hifnawi E, Herboth T, Hoerauf H, Birngruber R, Laqua H (1996) Zyklophotokoagulation mit dem Diodenlaser im Kontaktverfahren mit einer neuen fokussierenden Sonde. Ophthalmologe 93:576–580CrossRefPubMedGoogle Scholar
  31. 31.
    Preußner PR, Schwenn O (1995) Steps to optimize transscleral photocoagulation. Graefes Arch Clin Exp Ophthalmol 233:302–306CrossRefPubMedGoogle Scholar
  32. 32.
    Echelman DA, Stern RA, Shields SR, Simmons RB, Shields MB (1995) Variability of contact transscleral neodymium:YAG cyclophotocoagulation. Invest Ophthalmol Vis Sci 36:497–502PubMedGoogle Scholar
  33. 33.
    Preußner PR, Boos N, Faßbender K, Schwenn O, Pfeiffer N (1997) Real-time control for transscleral cyclophotocoagulation. Graefes Arch Clin Exp Ophthalmol 235:794–801CrossRefPubMedGoogle Scholar
  34. 34.
    Preußner PR (1998) Kontrollierte Zyklophotokoagulation. Ophthalmologe 95:645–650CrossRefPubMedGoogle Scholar
  35. 35.
    Geeraets WJ, Williams RC, Chan G, Ham WT, Guerry D, Schmidt FH (1960) The loss of light energy in retina and choroid. Arch Ophthalmol 64:606–615PubMedGoogle Scholar
  36. 36.
    Raivio VE, Immonen IJ, Puska PM (2001) Transscleral contact krypton laser cyclophotocoagulation for treatment of posttraumatic glaucoma. J Glaucoma 10:77–84CrossRefPubMedGoogle Scholar
  37. 37.
    Raivio VE, Vesaluoma MH, Tervo TM, Immonen IJ, Puska PM (2002) Corneal innervation, corneal mechanical sensitivity, and tear fluid secretion after transscleral contact 670 nm diode laser cyclophotocoagulation. J Glaucoma 11:446–453CrossRefPubMedGoogle Scholar
  38. 38.
    Liu GJ, Mizukawa A, Okisaka S (1994) Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd:YAG laser cyclophotocoagulation. Ophthalmic Res 26:65–79CrossRefPubMedGoogle Scholar
  39. 39.
    Schroder G (1990) Technische Optik. Kamprath-Reihe, Vogel, Würzburg, ISBN 3-8023-0067-XGoogle Scholar
  40. 40.
    Rol P, Niederer P, Dürr U, Henchoz PD, Fankhauser F (1990) Experimental investigations on the light scattering properties of the human sclera. Laser Light Ophthalmol 3:201–212Google Scholar
  41. 41.
    Vogel A, Dlugos C, Nuffer R, Birngruber R (1991) Die optischen Eigenschaften der menschlichen Sklera und deren Bedeutung für transsklerale Laseranwendungen. Fortschr Ophthalmol 88:754–761PubMedGoogle Scholar
  42. 42.
    Holbach M, Fiadoyor S, Preußner PR. Controlled cyclophotocoagulation for the therapy of primary open angle glaucoma in African eyes. Presentation to the 101st Congress of the Deutsche Ophthalmologische Gesellschaft (DOG), Berlin, 25-28.09.2003Google Scholar
  43. 43.
    Krott R, Diestelhorst M, Zollweg M, Krieglstein GK (1997) Zur Dosis-Wirkungs-Beziehung der transskleralen Kontaktzyklophotokoagulation. Ophthalmologe 94:273–276CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Paul-Rolf Preußner
    • 1
  • Faustin Ngounou
    • 2
  • Gabriel Kouogan
    • 2
  1. 1.Universitats-AugenklinikMainzGermany
  2. 2.Presbyterian Health Services Eye ClinicBafoussamCameroon

Personalised recommendations