Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results

  • Marcus Blum
  • Kathleen Kunert
  • Michael Schröder
  • Walter Sekundo
Refractive Surgery



To report the 6-month results of a new method of refractive correction, femtosecond lenticule extraction (FLEx), and the preliminary outcomes in the first 108 eyes.


In this prospective study, a flap and a lenticule of intrastromal corneal tissue were cut simultaneously using a femtosecond laser. Thereafter, the lenticule was removed manually and the flap repositioned. One hundred and seven of 108 myopic eyes of 56 patients in the treatment group completed the final 6 months of follow-up. The patients’ mean age was 35 years. The preoperative mean spherical equivalent (SE) was −4.59 ± 1.3 diopters (D). The uncorrected visual acuity and the best spectacle-corrected visual acuity after 6 months, objective and manifest refractions, results of slit-lamp examination, the side effects, and the responses to a questionnaire are reported.


Six months postoperatively, the mean SE was −0.19 ± 0.47 D; 98.1% of treated eyes were within ±1.0 D, and 74.8% of eyes within ±0.5 D of the intended correction. Eight (7.4%) of 108 eyes lost one line of Snellen VA, one (0.9%) eye lost two Snellen lines, 46 eyes (43%) gained one line, ten eyes (9.3%) gained two Snellen lines, and the VA remained unchanged in 42 (39.3%) eyes. The patient responses to a standardized questionnaire indicated that 97.1% of patients were satisfied with the obtained results and would undergo the procedure again.


FLEx appears to be a safe and promising corneal refractive procedure for correcting myopia.


Femtosecondlaser lenticule extraction Refractive surgery Myopia 


This study was supported by Carl Zeiss Meditec, Germany.


  1. 1.
    Barraquer JI (1996) The history and evolution of keratomileusis. Int Ophthalmol Clin 36:1–7CrossRefPubMedGoogle Scholar
  2. 2.
    Ibrahim O, Waring GO, Salah T, el Maghraby A (1995) Automated in situ keratomileusis for myopia. J Refract Surg 11:431–441PubMedGoogle Scholar
  3. 3.
    Wiegand W, Krusenberg B, Kroll P (1995) Keratomileusis in situ bei hochgradiger Myopie. Erste Ergebnisse. Ophthalmologe 92:402–409PubMedGoogle Scholar
  4. 4.
    Sekundo W (2007) Refraktive Chirurgie. In: Augustin AJ (ed) Augenheilkunde. Springer, Heidelberg, New York, Tokyo, pp 823–845Google Scholar
  5. 5.
    Nordan LT, Slade SG, Baker RN (2003) Femtosecond laser flap creation for laser in situ keratomileusis: six-months follow-up of the initial US clinical series. J Refract Surg 19:8–14PubMedGoogle Scholar
  6. 6.
    Ratkay-Traub I, Ferincz IE, Juhasz T, Kurtz RM, Krueger RR (2003) First clinical results with the femtosecond neodymium–glass laser in refractive surgery. J Refract Surg 19:94–103PubMedGoogle Scholar
  7. 7.
    Krueger RR, Juhasz T, Gualano A, Marchi V (1998) The picosecond laser for nonmechanical laser in situ keratomileusis. J Refract Surg 14:467–469PubMedGoogle Scholar
  8. 8.
    Sekundo W, Kunert K, Russmann Ch et al (2008) First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia. J Cataract Refract Surg 34:1513–1520CrossRefPubMedGoogle Scholar
  9. 9.
    Durrie DS, Kezirian GM (2005) Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study. J Cataract Refract Surg 31:120–126CrossRefPubMedGoogle Scholar
  10. 10.
    Tran DB, Sarayba MA, Bor Z et al (2005) Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: potential impact on wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 31:97–105CrossRefPubMedGoogle Scholar
  11. 11.
    Binder PS (2004) Flap dimensions created with the IntraLase FS laser. J Cataract Refract Surg 30:804–811CrossRefGoogle Scholar
  12. 12.
    Biser SA, Bloom AH, Donnenfeld ED et al (2003) Flap folds after femtosecond LASIK. Eye Contact Lens 29:252–254CrossRefPubMedGoogle Scholar
  13. 13.
    Muňoz G, Albarran-Diego C, Sakla FH et al (2006) Transient light-sensitivity syndrome after laser in situ keratomileusis with the femtosecond laser. J Cataract Refract Surg 32:2075–2079CrossRefPubMedGoogle Scholar
  14. 14.
    Steinert RF, Ignacio TS, Sarayba MA (2007) “Top hat”-shaped penetrating keratoplasty using the femtosecond laser. Am J Ophthalmol 143:689–691CrossRefPubMedGoogle Scholar
  15. 15.
    Ertan A, Kamburoğlu G (2007) Analysis of centration of Intacs segments implanted with a femtosecond laser. J Cataract Refract Surg 33:484–487CrossRefPubMedGoogle Scholar
  16. 16.
    Dupps WJ, Oberts C (2001) Effect of acute biomechanical changes on corneal curvature after photokeratectomy. J Refract Surg 17:658–669PubMedGoogle Scholar
  17. 17.
    Goes F (2005) LASIK for myopia with the Zeiss Meditec MEL 80. J Refract Surg 21:691–697PubMedGoogle Scholar
  18. 18.
    Blum M, Kunert K, Gille A, Sekundo W (2009) LASIK for myopia using the Zeiss VISUMAX® femtosecond laser and MEL 80 excimer laser. J Refract Surg 25:350–356CrossRefPubMedGoogle Scholar
  19. 19.
    Kezirian GM, Stonecipher KG (2004) Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ Keratomileusis. J Cataract Refract Surg 30:26–32CrossRefGoogle Scholar
  20. 20.
    Reviglio VE, Kuo IC, Gramajo L et al (2007) Acute rhegmatogenous retinal detachment immediately following laser in situ keratomileusis. J Cataract Refract Surg 33:536–359CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marcus Blum
    • 1
  • Kathleen Kunert
    • 1
  • Michael Schröder
    • 2
  • Walter Sekundo
    • 2
  1. 1.Department of OphthalmologyHelios Hospital ErfurtErfurtGermany
  2. 2.Department of OphthalmologyPhillips UniversitätMarburgGermany

Personalised recommendations