IL-2 and IFN-gamma in the retina of diabetic rats

  • Siv Johnsen-Soriano
  • María Sancho-Tello
  • Emma Arnal
  • Amparo Navea
  • Enrique Cervera
  • Francisco Bosch-Morell
  • Maria Miranda
  • Francisco Javier Romero
Basic Science



The pathophysiology of the early events leading to diabetic retinopathy is not fully understood. It has been suggested that Inflammatory processes are involved in the development of the disease; however, the concentrations of tissue retinal inflammatory mediators and their possible alteration in diabetic retinopathy have not been described. The aim of this work was to study T-helper cell cytokine and chemokine profiles, and tyrosine nitration in retinal tissue of diabetic rats.


Cytokines (interleukin IL-1a, IL-1b, IL-2, IL-4, IL-6, IL-10, TNFa, GM-CSF, IFN-g), chemokines (MIP-1a, MIP-2, MIP-3a, MCP-1, GRO/KC, RANTES, Fractalkine), and tyrosine nitration were measured in retinal homogenate obtained from Long–Evans rats after 5 months of experimental diabetes.


The T-helper type 1 cytokines IL-2 and INF-gamma, in addition to NO production (measured as nitrotyrosine), were found to be significantly elevated in diabetic rat retina homogenates. None of the other cytokines and chemokines studied were affected by the diabetic condition.


Immunoregulatory cytokines belonging to the Th-1 group (IL-2 and IFN-gamma) were increased in the retina of experimental diabetic rats. Moreover, the nitrotyrosine formation (as an expression of increased NO production) was significantly elevated in the diabetic retina, supporting the concept of an inflammatory element in the development of diabetic retinopathy.


Diabetic retinopathy IL-2 IFN-gamma Chemokine Cytokine 


  1. 1.
    Chu J, Ali Y (2008) Diabetic retinopathy: a review. Drug Development Research 69:1–14CrossRefGoogle Scholar
  2. 2.
    Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103PubMedGoogle Scholar
  3. 3.
    Schroder S, Palinski W, Schmid-Schonbein GW (1991) Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 139:81–100PubMedGoogle Scholar
  4. 4.
    Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC, Aiello LP, Ogura Y, Adamis AP (1999) Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA 96:10836–10841CrossRefPubMedGoogle Scholar
  5. 5.
    Boeri D, Maiello M, Lorenzi M (2001) Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes 50:1432–1439CrossRefPubMedGoogle Scholar
  6. 6.
    Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Dohmen S, Adamis AP (2002) Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. Faseb J 16:438–440PubMedGoogle Scholar
  7. 7.
    Kowluru RA, Odenbach S (2004) Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol 88:1343–1347CrossRefPubMedGoogle Scholar
  8. 8.
    Vincent JA, Mohr S (2007) Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56:224–230CrossRefPubMedGoogle Scholar
  9. 9.
    Abu el Asrar AM, Maimone D, Morse PH, Gregory S, Reder AT (1992) Cytokines in the vitreous of patients with proliferative diabetic retinopathy. Am J Ophthalmol 114:731–736PubMedGoogle Scholar
  10. 10.
    Tang S, Scheiffarth OF, Thurau SR, Wildner G (1993) Cells of the immune system and their cytokines in epiretinal membranes and in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmic Res 25:177–185CrossRefPubMedGoogle Scholar
  11. 11.
    Meleth AD, Agron E, Chan CC, Reed GF, Arora K, Byrnes G, Csaky KG, Ferris FL 3rd, Chew EY (2005) Serum inflammatory markers in diabetic retinopathy. Invest Ophthalmol Vis Sci 46:4295–4301CrossRefPubMedGoogle Scholar
  12. 12.
    Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree IA (2006) Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: Implications for structural differences in macular profiles. Exp Eye Res 82:798–806CrossRefPubMedGoogle Scholar
  13. 13.
    Maier R, Weger M, Haller-Schober EM, El-Shabrawi Y, Wedrich A, Theisl A, Aigner R, Barth A, Haas A (2008) Multiplex bead analysis of vitreous and serum concentrations of inflammatory and proangiogenic factors in diabetic patients. Mol Vis 14:637–643PubMedGoogle Scholar
  14. 14.
    Murugeswari P, Shukla D, Rajendran A, Kim R, Namperumalsamy P, Muthukkaruppan V (2008) Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and Eales’ disease. Retina 28:817–824CrossRefPubMedGoogle Scholar
  15. 15.
    Vijay SK, Mishra M, Kumar H, Tripathi K (2009) Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 46:27–33CrossRefPubMedGoogle Scholar
  16. 16.
    ter Steege JC, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA (1998) Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 25:953–963CrossRefPubMedGoogle Scholar
  17. 17.
    Singh VK, Mehrotra S, Narayan P, Pandey CM, Agarwal SS (2000) Modulation of autoimmune diseases by nitric oxide. Immunol Res 22:1–19CrossRefPubMedGoogle Scholar
  18. 18.
    Gustavsson C, Agardh CD, Hagert P, Agardh E (2008) Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina 28:645–652CrossRefPubMedGoogle Scholar
  19. 19.
    Nehme A, Edelman J (2008) Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest Ophthalmol Vis Sci 49:2030–2038CrossRefPubMedGoogle Scholar
  20. 20.
    Kowluru RA, Odenbach S (2004) Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. Invest Ophthalmol Vis Sci 45:4161–4166CrossRefPubMedGoogle Scholar
  21. 21.
    Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54:1559–1565CrossRefPubMedGoogle Scholar
  22. 22.
    Olejniczak K, Kasprzak A (2008) Biological properties of interleukin 2 and its role in pathogenesis of selected diseases—a review. Med Sci Monit 14:RA179–RA189PubMedGoogle Scholar
  23. 23.
    Antony PA, Paulos CM, Ahmadzadeh M, Akpinarli A, Palmer DC, Sato N, Kaiser A, Hinrichs CS, Klebanoff CA, Tagaya Y, Restifo NP (2006) Interleukin-2-dependent mechanisms of tolerance and immunity in vivo. J Immunol 176:5255–5266PubMedGoogle Scholar
  24. 24.
    Dmoszynska A, Kandefer-Szerszen M, Rolinski J, Legiec W, Kaminska T (1999) Influence of low dose rIL-2 treatment on endogenous cytokine production, expression of surface IL-2R and the level of soluble IL-2R in patients with minimal residual disease. Leuk Lymphoma 35:355–366CrossRefPubMedGoogle Scholar
  25. 25.
    Kuhn DJ, Dou QP (2005) The role of interleukin-2 receptor alpha in cancer. Front Biosci 10:1462–1474CrossRefPubMedGoogle Scholar
  26. 26.
    Bien E, Balcerska A, Kuchta G (2007) Serum level of soluble interleukin-2 receptor alpha correlates with the clinical course and activity of Wilms’ tumour and soft tissue sarcomas in children. Biomarkers 12:203–213CrossRefPubMedGoogle Scholar
  27. 27.
    Doganay S, Evereklioglu C, Er H, Turkoz Y, Sevinc A, Mehmet N, Savli H (2002) Comparison of serum NO, TNF-alpha, IL-1beta, sIL-2R, IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus. Eye 16:163–170CrossRefPubMedGoogle Scholar
  28. 28.
    Matteucci E, Malvaldi G, Fagnani F, Evangelista I, Giampietro O (2004) Redox status and immune function in type I diabetes families. Clin Exp Immunol 136:549–554CrossRefPubMedGoogle Scholar
  29. 29.
    Geiger K, Howes E, Gallina M, Huang XJ, Travis GH, Sarvetnick N (1994) Transgenic mice expressing IFN-gamma in the retina develop inflammation of the eye and photoreceptor loss. Invest Ophthalmol Vis Sci 35:2667–2681PubMedGoogle Scholar
  30. 30.
    Miranda M, Muriach M, Romá J, Bosch-Morell F, Genovés JM, Barcia J, Araiz J, Diaz-Llopis M, Romero FJ (2006) Oxidative stress in a model of experimental diabetic retinopathy. II. Peroxynitrite scavengers utility. Arch Soc Esp Oftalmol 80:27–32Google Scholar
  31. 31.
    Yuan Z, Feng W, Hong J, Zheng Q, Shuai J, Ge Y (2009) p38MAPK and ERK promote nitric oxide production in cultured human retinal pigmented epithelial cells induced by high concentration glucose. Nitric Oxide 20:9–15CrossRefPubMedGoogle Scholar
  32. 32.
    Gesbert F, Delespine-Carmagnat M, Bertoglio J (1998) Recent advances in the understanding of interleukin-2 signal transduction. J Clin Immunol 18:307–320CrossRefPubMedGoogle Scholar
  33. 33.
    Martino A, JHt H, Lord JD, Moon JJ, Nelson BH (2001) Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. J Immunol 166:1723–1729PubMedGoogle Scholar
  34. 34.
    Moon JJ, Rubio ED, Martino A, Krumm A, Nelson BH (2004) A permissive role for phosphatidylinositol 3-kinase in the Stat5-mediated expression of cyclin D2 by the interleukin-2 receptor. J Biol Chem 279:5520–5527CrossRefPubMedGoogle Scholar
  35. 35.
    Shio MT, Olivier M, Jancar S, Ribeiro-Dias F (2008) Crucial cytokine interactions in nitric oxide production induced by Mycoplasma arthritidis superantigen. Microbes Infect 10:1543–1551CrossRefPubMedGoogle Scholar
  36. 36.
    Kern TS, Tang J, Mizutani M, Kowluru RA, Nagaraj RH, Romeo G, Podesta F, Lorenzi M (2000) Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest Ophthalmol Vis Sci 41:3972–3978PubMedGoogle Scholar
  37. 37.
    Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187CrossRefPubMedGoogle Scholar
  38. 38.
    Ogden CA, Elkon KB (2006) Role of complement and other innate immune mechanisms in the removal of apoptotic cells. Curr Dir Autoimmun 9:120–142PubMedGoogle Scholar
  39. 39.
    Wu Y, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol 16:189–197CrossRefPubMedGoogle Scholar
  40. 40.
    Ren G, Su J, Zhao X, Zhang L, Zhang J, Roberts AI, Zhang H, Das G, Shi Y (2008) Apoptotic cells induce immunosuppression through dendritic cells: critical roles of IFN-gamma and nitric oxide. J Immunol 181:3277–3284PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Siv Johnsen-Soriano
    • 1
    • 2
  • María Sancho-Tello
    • 1
    • 3
  • Emma Arnal
    • 1
  • Amparo Navea
    • 1
  • Enrique Cervera
    • 4
  • Francisco Bosch-Morell
    • 1
    • 2
  • Maria Miranda
    • 2
  • Francisco Javier Romero
    • 1
    • 2
  1. 1.Fundación Oftalmológica del Mediterráneo (FOM)Bifurcación Pio Baroja-General AvilésValenciaSpain
  2. 2.Departamento de Fisiología, Farmacología y ToxicologíaUniversidad CEU-Cardenal HerreraValenciaSpain
  3. 3.Departamento de Patología, Facultad de Medicina y OdontologíaUniversidad de ValenciaValenciaSpain
  4. 4.Servicio de OftalmologíaHospital General UniversitarioValenciaSpain

Personalised recommendations