The effect of optotype presentation duration on acuity estimates revisited

  • Sven P. HeinrichEmail author
  • Katja Krüger
  • Michael Bach
Basic Science



A high reproducibility of visual acuity estimates is important when monitoring disease progression or treatment success. One factor that may affect the result of an acuity measurement is the duration of optotype presentation. For times below 1 s, previous studies have convincingly shown that acuity estimates increase with presentation duration. For durations above 1 s, the situation is less clear.


We have reassessed this issue using the Freiburg Visual Acuity Test with normal subjects. Presentation durations of 0.1 s, 1 s, and 10 s were assessed.


Confirming previous findings, in all subjects acuity estimates in the 1-s condition were higher than those in the 0.1-s condition, on average nearly by a factor of 2, equivalent to 3 lines. However, in 12 out of 14 subjects, acuity estimates increased further with a presentation duration of 10 s, on average by 23% (P = 0.002), or roughly 1 line. Test–retest variability improved by 49% (P = 0.003). These findings can be explained by a simple statistical model of acuity fluctuations. Cognitive processing may also be a relevant factor. Interestingly, most observers subjectively felt that they could perceive the optotypes best in the 1-s condition.


The results highlight the importance of standardizing presentation durations when high reproducibility is required.


Visual acuity Exposure duration Presentation duration Optotype Acuity test 



This study was supported by the Deutsche Forschungsgemeinschaft (BA 877/18). We are grateful to our subjects for their participation.


  1. 1.
    Graham CH, Cook C (1937) Visual acuity as a function of intensity and exposure-time. Am J Psychol 49:654–661CrossRefGoogle Scholar
  2. 2.
    Monjé M, Schober H (1950) Vergleichende Untersuchungen an Sehproben für die Fernvisusbestimmung. Klin Monatsbl Augenheilkd 117:561–570Google Scholar
  3. 3.
    Zanen J, Klaassen-Nenquin E (1957) Acuité visuelle en fonction du temps d’exposition. Bull Soc Belge Ophtalmol 114:574–581PubMedGoogle Scholar
  4. 4.
    Schwarz F (1947) Der Einfluß der Darbietungszeit auf die Erkennbarkeit von Sehproben. Pflügers Arch 249:354–360CrossRefGoogle Scholar
  5. 5.
    Schwarz F (1951) Neue Sehschärfenmessungen: Die Prüfung der Sehleistung unter Berücksichtigung der Darbietungszeit der Sehproben. Graefes Arch Ophthalmol 151:714–724CrossRefGoogle Scholar
  6. 6.
    Ehlers H (1948) On visual velocity. Acta Ophthalmol 26:115–121Google Scholar
  7. 7.
    Gerbstädt U (1949) Der Einfluß der Sehprobengröße auf die minimale Darbietungszeit. Pflügers Arch 251:559–570CrossRefGoogle Scholar
  8. 8.
    Baron WS, Westheimer G (1973) Visual acuity as a function of exposure duration. J Opt Soc Am 63:212–219CrossRefPubMedGoogle Scholar
  9. 9.
    Kono M, Yamade S (1996) Temporal integration in diseased eyes. Int Ophthalmol 20:231–239PubMedGoogle Scholar
  10. 10.
    von Boehmer H, Kolling GH (1998) Zusammenhang zwischen Sehschärfe und Darbietungszeit einzelner Landoltringe bei Normalpersonen und bei Nystagmus-Patienten. Ophthalmologe 95:717–720CrossRefGoogle Scholar
  11. 11.
    Ng J, Westheimer G (2002) Time course of masking in spatial resolution tasks. Optom Vis Sci 79:98–102CrossRefPubMedGoogle Scholar
  12. 12.
    Westheimer G (1987) Visual acuity. In: Moses RA, Hart WM (eds) Adler’s physiology of the eye, 8th edn. Mosby, St. Luis, pp 415–428Google Scholar
  13. 13.
    Charman WN, Heron G (1988) Fluctuations in accommodation: a review. Ophthalmic Physiol Opt 8:153–164CrossRefPubMedGoogle Scholar
  14. 14.
    Stark L, Campbell FW, Atwood J (1958) Pupil unrest: an example of noise in a biological servomechanism. Nature 182:857–858CrossRefPubMedGoogle Scholar
  15. 15.
    Montés-Micó R (2007) Role of the tear film in the optical quality of the human eye. J Cataract Refract Surg 33:1631–1635CrossRefPubMedGoogle Scholar
  16. 16.
    Bach M (1996) The “Freiburg Visual Acuity Test” — Automatic measurement of the visual acuity. Optom Vis Sci 73:49–53CrossRefPubMedGoogle Scholar
  17. 17.
    Liebeman HR, Pentlant AP (1982) Microcomputer-based estimation of psychophysiological thresholds: the best PEST. Behav Res Methods Instrument 14:21–25Google Scholar
  18. 18.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMedGoogle Scholar
  19. 19.
    Bartlett NR (1965) Thresholds as dependent on some energy relations and characteristics of the subject. In: Graham CH (ed) Visual perception. Wiley, New York, pp 154–184Google Scholar
  20. 20.
    Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Statist Ass 44:335–341CrossRefPubMedGoogle Scholar
  21. 21.
    Arditi A, Cagenello R (1993) On the statistical reliability of letter-chart visual acuity measurements. Invest Ophthalmol Vis Sci 34:120–129PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Sven P. Heinrich
    • 1
    Email author
  • Katja Krüger
    • 2
  • Michael Bach
    • 1
  1. 1.Sektion Funktionelle SehforschungUniv.-AugenklinikFreiburgGermany
  2. 2.Fakultät für BiologieAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations