Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA)

  • Karim Makdoumi
  • Anders Bäckman
  • Jes Mortensen
  • Sven Crafoord
Basic Science



To evaluate the antibacterial efficacy of photo-activated riboflavin using Ultraviolet A (UVA) on three bacterial strains commonly detected in keratitis.


Three bacterial strains (Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa) were cultured on blood/hematin–agar plates and dispersed in PBS. Dispersion was done of 10 μl of bacterial stock-solutions in 90 μl of RPMI, where different riboflavin molarities had been added, to achieve a bacterial concentration of 1-4 × 10 4/ml. Riboflavin end molarities before illumination were 0, 100, 200, 300 and 400 μM. Each solution had a negative control. The solutions were illuminated with UVA (365 nm) for 30 minutes (5.4 J/cm2) and then continued for a total time of 60 minutes (10.8 J/cm2). A count of CFU was conducted after incubation and results compared.


In all tested strains, a slight decrease of bacteria was seen when exposed to UV for 30 minutes. A doubling of the UV dose showed a marked decrease of bacterial count in all bacteria tested. The combination of UV and riboflavin showed a more extensive reduction of CFU, confirming an interaction effect between UV and riboflavin.


Riboflavin photo-activation using UVA (365 nm) can achieve an extensive eradication of bacteria, and the combination is more potent in reducing bacterial number than UV alone.


Riboflavin UVA Keratitis Cross-linking Antimicrobial 


  1. 1.
    Tsugita A, Okada Y, Uehara K (1965) Photosensitized inactivation of ribonucleic acids in the presence of riboflavin. Biochim Biophys Acta 103:360–363PubMedGoogle Scholar
  2. 2.
    Kumar V, Lockerbie O, Keil SD, Ruane PH, Platz MS, Martin CB, Ravanat JL, Cadet J, Goodrich RP (2004) Riboflavin and UV-light based pathogen reduction: extent and consequence of DNA damage at the molecular level. Photochem Photobiol 80:15–21CrossRefPubMedGoogle Scholar
  3. 3.
    Corbin F 3rd (2002) Pathogen inactivation of blood components: current status and introduction of an approach using riboflavin as a photosensitizer. Int J Hematol 76(Suppl 2):253–257, ReviewCrossRefPubMedGoogle Scholar
  4. 4.
    AuBuchon JP, Herschel L, Roger J, Taylor H, Whitley P, Li J, Edrich R, Goodrich RP (2005) Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction. Transfusion 45:1335–1341PubMedGoogle Scholar
  5. 5.
    Ruane PH, Edrich R, Gampp D, Keil SD, Leonard RL, Goodrich RP (2004) Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion 44:877–885CrossRefPubMedGoogle Scholar
  6. 6.
    Cardo LJ, Rentas FJ, Ketchum L, Salata J, Harman R, Melvin W, Weina PJ, Mendez J, Reddy H, Goodrich R (2006) Pathogen inactivation of Leishmania donovani infantum in plasma and platelet concentrates using riboflavin and ultraviolet light. Vox Sang 90:85–91CrossRefPubMedGoogle Scholar
  7. 7.
    Cardo LJ, Salata J, Mendez J, Reddy H, Goodrich R (2007) Pathogen inactivation of Trypanosoma cruzi in plasma and platelet concentrates using riboflavin and ultraviolet light. Transfus Apher Sci 37:131–137CrossRefPubMedGoogle Scholar
  8. 8.
    Goodrich RP, Edrich RA, Li J, Seghatchian J (2006) The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends. Transfus Apher Sci 35:5–17, ReviewCrossRefPubMedGoogle Scholar
  9. 9.
    AuBuchon JP, Herschel L, Roger J, Taylor H, Whitley P, Li J, Edrich R, Goodrich RP (2005) Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction. Transfusion 45:1335–1341PubMedGoogle Scholar
  10. 10.
    Picker SM, Steisel A, Gathof BS (2008) Effects of Mirasol PRT treatment on storage lesion development in plasma-stored apheresis-derived platelets compared to untreated and irradiated units. Transfusion 48:1685–1692CrossRefPubMedGoogle Scholar
  11. 11.
    Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP (2008) Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev 22:133–153, ReviewCrossRefPubMedGoogle Scholar
  12. 12.
    Perez-Pujol S, Tonda R, Lozano M, Fuste B, Lopez-Vilchez I, Galan AM, Li J, Goodrich R, Escolar G (2005) Effects of a new pathogen-reduction technology (Mirasol PRT) on functional aspects of platelet concentrates. Transfusion 45:911–919CrossRefPubMedGoogle Scholar
  13. 13.
    Wollensak G (2006) Crosslinking treatment of progressive keratoconus: new hope. Curr Opin Ophthalmol 17:356–360, ReviewCrossRefPubMedGoogle Scholar
  14. 14.
    Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135:620–627CrossRefPubMedGoogle Scholar
  15. 15.
    Kanellopoulos AJ, Binder PS (2007) Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea 26:891–895CrossRefPubMedGoogle Scholar
  16. 16.
    Hafezi F, Kanellopoulos J, Wiltfang R, Seiler T (2007) Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis. J Cataract Refract Surg 33:2035–2040CrossRefPubMedGoogle Scholar
  17. 17.
    Caporossi A, Baiocchi S, Mazzotta C, Traversi C, Caporossi T (2006) Parasurgical therapy for keratoconus by riboflavin-ultraviolet type A rays induced cross-linking of corneal collagen: preliminary refractive results in an Italian study. J Cataract Refract Surg 32:837–845CrossRefPubMedGoogle Scholar
  18. 18.
    Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE (2008) Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: long-term results. J Cataract Refract Surg 34:796–801CrossRefPubMedGoogle Scholar
  19. 19.
    Coskunseven E, Jankov MR 2nd, Hafezi F (2009) Contralateral eye study of corneal collagen cross-linking with riboflavin and UVA irradiation in patients with keratoconus. J Refract Surg 25:371–376CrossRefPubMedGoogle Scholar
  20. 20.
    Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR (2008) A randomized controlled trial of corneal collagen cross-linking in progressive keratoconus: preliminary results. J Refract Surg 24:S720–S725PubMedGoogle Scholar
  21. 21.
    Vinciguerra P, Albè E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, Epstein D (2009) Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology 116:369–378CrossRefPubMedGoogle Scholar
  22. 22.
    Schnitzler E, Spörl E, Seiler T (2000) Irradiation of cornea with ultraviolet light and riboflavin administration as a new treatment for erosive corneal processes, preliminary results in four patients. Klin Monatsbl Augenheilkd 217:190–193CrossRefPubMedGoogle Scholar
  23. 23.
    Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T (2008) Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea 27:590–594CrossRefPubMedGoogle Scholar
  24. 24.
    Micelli Ferrari T, Leozappa M, Lorusso M, Epifani E, Micelli Ferrari L (2009) Escherichia coli keratitis treated with ultraviolet A/riboflavin corneal cross-linking: a case report. Eur J Ophthalmol 19:295–297PubMedGoogle Scholar
  25. 25.
    Martins SA, Combs JC, Noguera G, Camacho W, Wittmann P, Walther R, Cano M, Dick J, Behrens A (2008) Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci 49:3402–3408CrossRefPubMedGoogle Scholar
  26. 26.
    Moshirfar M, Meyer JJ, Espandar L (2007) Fourth-generation fluoroquinolone-resistant mycobacterial keratitis after laser in situ keratomileusis. J Cataract Refract Surg 33:1978–1981CrossRefPubMedGoogle Scholar
  27. 27.
    Mamalis N (2007) The increasing problem of antibiotic resistance. J Cataract Refract Surg 33:1831–1832CrossRefPubMedGoogle Scholar
  28. 28.
    de la Cruz J, Behlau I, Pineda R (2007) Atypical mycobacteria keratitis after laser in situ keratomileusis unresponsive to fourth-generation fluoroquinolone therapy. J Cataract Refract Surg 33:1318–1321CrossRefPubMedGoogle Scholar
  29. 29.
    Moshirfar M, Mirzaian G, Feiz V, Kang PC (2006) Fourth-generation fluoroquinolone-resistant bacterial keratitis after refractive surgery. J Cataract Refract Surg 32:515–518CrossRefPubMedGoogle Scholar
  30. 30.
    Jhanji V, Sharma N, Satpathy G, Titiyal J (2007) Fourth-generation fluoroquinolone-resistant bacterial keratitis. J Cataract Refract Surg 33:1488–1489CrossRefPubMedGoogle Scholar
  31. 31.
    McGhee CN, Niederer R (2006) Resisting susceptibility: bacterial keratitis and generations of antibiotics. Clin Experiment Ophthalmol 34:3–5CrossRefPubMedGoogle Scholar
  32. 32.
    Betanzos-Cabrera G, Juárez-Verdayes MA, González-González G, Cancino-Díaz ME, Cancino-Díaz JC (2009) Gatifloxacin, moxifloxacin, and balofloxacin resistance due to mutations in the gyrA and parC genes of Staphylococcus epidermidis strains isolated from patients with endophthalmitis, corneal ulcers and conjunctivitis. Ophthalmic Res 42:43–48CrossRefPubMedGoogle Scholar
  33. 33.
    O'Neill AJ (2008) New antibacterial agents for treating infections caused by multi-drug resistant Gram-negative bacteria. Expert Opin Investig Drugs 17:297–302, ReviewCrossRefPubMedGoogle Scholar
  34. 34.
    Talbot GH (2008) What is in the pipeline for Gram-negative pathogens? Expert Rev Anti Infect Ther 6:39–49, ReviewCrossRefPubMedGoogle Scholar
  35. 35.
    Nicasio AM, Kuti JL, Nicolau DP (2008) The current state of multidrug-resistant gram-negative bacilli in North America. Pharmacotherapy 28:235–249, ReviewCrossRefPubMedGoogle Scholar
  36. 36.
    McGowan JE Jr (2006) Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Am J Med 119(Suppl 1):S29–S36, discussion S62-70. ReviewCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Karim Makdoumi
    • 1
  • Anders Bäckman
    • 2
  • Jes Mortensen
    • 1
  • Sven Crafoord
    • 1
  1. 1.Department of OphthalmologyÖrebro University HospitalÖrebroSweden
  2. 2.Clinical Research CentreÖrebro University HospitalÖrebroSweden

Personalised recommendations