Dynamic changes in the air–tear film interface modulation transfer function

  • Teresa Ferrer-Blasco
  • Santiago García-Lázaro
  • Robert Montés-Micó
  • Alejandro Cerviño
  • Jose M. González-Méijome
Cornea

Abstract

Purpose

To determine objectively the changes in the optical quality of the air–tear film interface by measuring the modulation transfer function (MTF) of the anterior surface of the film.

Methods

Air–tear film interface MTF was determined from the wavefront aberration obtained from corneal elevation maps and custom software. MTF and Strehl ratio were derived for 3 (photopic) and 7 (mesopic) mm pupils, in 14 healthy young subjects at various intervals after a blink (1 second up to 15 seconds). Fluorescein tear break-up times (TBUT) measured by a standard method were determined for clinical correlation purposes

Results

The MTF profile varies as a function of the time post-blink, showing the highest values at 6–7 seconds. Strehl ratio showed a similar dynamic pattern reaching its maximum level, on average, at 6.2 ± 0.4 seconds after a blink. Minimum levels occur from 10 seconds after a blink, worsening with larger times. Strehl ratio values were correlated with clinical TBUT: minimum values were found to occur earlier for those subjects with shorter TBUT and vice versa.

Conclusion

Air–tear film interface MTF and Strehl ratio estimation are useful metrics for optical quality analysis of tear film changes.

Keywords

Tear Optical quality Ocular surface 

References

  1. 1.
    Montés-Micó R (2007) Role of the tear film in the optical quality of the human eye. J Cataract Refract Surg 33:1631–1635CrossRefPubMedGoogle Scholar
  2. 2.
    Montés-Micó R, Alió JL, Muñoz G, Charman WN (2004) Temporal changes in optical quality of air–tear film interface at anterior cornea after blink. Invest Ophthalmol Vis Sci 45:1752–1757CrossRefPubMedGoogle Scholar
  3. 3.
    Montés-Micó R, Alió JL, Muñoz G, Pérez-Santonja JJ, Charman WN (2004) Postblink changes in total and corneal ocular aberrations. Ophthalmology 111:758–767CrossRefPubMedGoogle Scholar
  4. 4.
    Koh S, Maeda N, Hirohara Y et al (2006) Serial measurements of higher-order aberrations after blinking in normal subjects. Invest Ophthalmol Vis Sci 47:3318–3324CrossRefPubMedGoogle Scholar
  5. 5.
    Montés-Micó R, Cáliz A, Alió JL (2004) Wavefront analysis of higher-order aberrations in dry eye patients. J Refract Surg 20:243–247PubMedGoogle Scholar
  6. 6.
    Montés-Micó R, Cáliz A, Alió JL (2004) Changes in ocular aberrations after artificial tears instillation in dry eye patients. J Cataract Refract Surg 30:1649–1652CrossRefPubMedGoogle Scholar
  7. 7.
    Montés-Micó R, Alió JL, Charman WN (2005) Dynamic changes in the tear film in dry eyes. Invest Ophthalmol Vis Sci 46:1615–1619CrossRefPubMedGoogle Scholar
  8. 8.
    Koh S, Maeda N, Hirohara Y et al (2008) Serial measurements of higher-order aberrations after blinking in patients with dry eye. Invest Ophthalmol Vis Sci 49:133–138CrossRefPubMedGoogle Scholar
  9. 9.
    Benedetto DA, Clinch TE, Laibson PR (1984) In vivo observation of tear film dynamics using fluorophotometry. Arch Ophthalmol 102:410–412PubMedGoogle Scholar
  10. 10.
    Licznerski TJ, Kasprzak HT, Kowalik W (1998) Analysis of shearing interferograms of tear film using fast-Fourier transforms. J Biomed Opt 3:23–37CrossRefGoogle Scholar
  11. 11.
    Tutt R, Bradley A, Begley C, Thibos LN (2000) Optical and visual impact of tear break-up in human eyes. Invest Ophthalmol Vis Sci 41:4117–4123PubMedGoogle Scholar
  12. 12.
    Németh J, Erdélyi B, Csákány B et al (2002) High-speed videokeratographic measurement of tear film build-up time. Invest Ophthalmol Vis Sci 43:1783–1790PubMedGoogle Scholar
  13. 13.
    Himebaugh NL, Wright AR, Bradley A, Begley CG, Thibos LN (2003) Use of retroillumination to visualize optical aberrations caused by tear film break-up. Optom Vis Sci 80:69–78CrossRefPubMedGoogle Scholar
  14. 14.
    Montés-Micó R, Alió JL, Charman WN (2005) Postblink changes in the ocular modulation transfer function measured by a double-pass method. Invest Ophthalmol Vis Sci 46:4468–4473CrossRefPubMedGoogle Scholar
  15. 15.
    Montés-Micó R, Charman WN (2001) Choice of spatial frequency for contrast sensitivity evaluation after refractive surgery. J Refract Surg 17:646–651PubMedGoogle Scholar
  16. 16.
    Cho P, Leung L, Lam A, Choi A (1998) Tear break-up test: clinical procedures and their effects. Ophthal Physiol Opt 18:319–324CrossRefGoogle Scholar
  17. 17.
    Novak KD, Kohnen T, Chang-Godinich A et al (1997) Changes in computerized videokeratopraphy induced by artificial tears. J Cataract Refract Surg 23:1023–1028PubMedGoogle Scholar
  18. 18.
    Huang FC, Tseng SH, Shih MH, Chen FK (2002) Effect of artificial tears on corneal surface regularity, contrast sensitivity, and glare disability in dry eye patients. Ophthalmology 109:1934–1940CrossRefPubMedGoogle Scholar
  19. 19.
    Goto E, Yagi Y, Matsumoto Y, Tsubota K (2002) Impaired functional visual acuity of dry eye patients. Am J Ophthalmol 133:181–186CrossRefPubMedGoogle Scholar
  20. 20.
    Kopf M, Yi F, Iskander R et al (2008). Tear film surface quality with soft contact lenses using dynamic videokeratoscopy. J Optom 1:14–21Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Teresa Ferrer-Blasco
    • 1
  • Santiago García-Lázaro
    • 1
  • Robert Montés-Micó
    • 1
  • Alejandro Cerviño
    • 1
  • Jose M. González-Méijome
    • 2
  1. 1.Optometry Research Group, Optics Department, Faculty of PhysicsUniversity of ValenciaBurjassotSpain
  2. 2.Clinical & Experimental Optometry Research Lab, School of SciencesUniversidade do MinhoBragaPortugal

Personalised recommendations