Advertisement

Longer lasting electroretinographic recordings from the isolated and superfused murine retina

  • Walid Albanna
  • Mohammed Banat
  • Nadeen Albanna
  • Maged Alnawaiseh
  • Sergej A. Siapich
  • Peter Igelmund
  • Marco Weiergräber
  • Matthias Lüke
  • Toni SchneiderEmail author
Basic Science

Abstract

Background

Analysis of retinal signaling in mutant mice has become a powerful tool for studying retinal function and disease. Previous attempts to record from isolated mouse retina have been limited to short time periods (about 90 min). It would be desirable to achieve longer-lasting recordings comparable to those that have been performed in larger vertebrates such as rat, rabbit, cat, and bovine (up to 10 h). We performed a series of recordings from isolated mouse retina under a number of different conditions in order to determine the optimal parameters for this species.

Methods

We used a superfused vertebrate retina assay, for which the murine retina had to be isolated with specific tools. Subsequently, the ERG recordings were optimized for nutrient solution, incubation temperature, and flash light intensity.

Results

To improve the sensitivity and stability of photoreceptor and retinal network responses from the isolated and superfused murine retina, two different nutrient solutions from rat (physiological Ca2+) and bovine (reduced Ca2+ but increased phosphate buffering capacity) were used. Further, a temperature reduced to 27.5°C, a light intensity ten-fold increased (63 mlux), and an increased flow rate (2 ml/min) provided conditions under which the b-wave response was stable for more than 3 hours. Well-known Ca2+ channel antagonists (isradipine and NiCl2) were tested for their potency to antagonize transretinal signalling.

Conclusion

In conclusion, the isolated murine retina can be used as a pharmacological testing system, which provides the additional advantage of selective gene inactivation for better understanding of retinal signalling.

Keywords

Murine ERG Isolated vertebrate retina a-wave b-wave Light sensitivity Dihydropyridine NiCl2 Oxygen 

Notes

Acknowledgements

We acknowledge the support from Prof. Dr. J. Hescheler, chairman of the Institute for Neurophysiology, Cologne. The work was financially supported by the Köln Fortune Program/Faculty of Medicine, University of Köln by a Promotionsstipendium to W.A. and M.B., and by the Center of Molecular Medicine Cologne/Zentrum für Molekulare Medizin Köln (Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Förderkennzeichen 01 KS 9502, to TS, MW and JH).

Supplementary material

417_2009_1119_MOESM1_ESM.pdf (740 kb)
ESM 1 (PDF 739 kb)
417_2009_1119_MOESM2_ESM.doc (36 kb)
Supplement (DOC 35.5 kb)
ESM 3

(AVI 129 mb)

References

  1. 1.
    Granit R (1933) The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol 77:207–239PubMedGoogle Scholar
  2. 2.
    Hood DC, Birch DG (1990) The A-wave of the human electroretinogram and rod receptor function. Invest Ophthalmol Vis Sci 31:2070–2081PubMedGoogle Scholar
  3. 3.
    Hood DC, Birch DG (1992) A computational model of the amplitude and implicit time of the b-wave of the human ERG. Vis Neurosci 8:107–126PubMedCrossRefGoogle Scholar
  4. 4.
    Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850PubMedCrossRefGoogle Scholar
  5. 5.
    Shiells RA, Falk G (1999) Contribution of rod, on-bipolar, and horizontal cell light responses to the ERG of dogfish retina. Vis Neurosci 16:503–511PubMedCrossRefGoogle Scholar
  6. 6.
    Sickel W (1972) Retinal metabolism in dark and light. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology. Springer-Verlag, Berlin Heidelberg New York, pp 667–727Google Scholar
  7. 7.
    Walter P, Sickel W (1994) Identification of fast spurts of pyridine nucleotide oxidation evoked by light stimulation in the isolated perfused vertebrate retina. Graefes Arch Clin Exp Ophthalmol 232:318–323PubMedCrossRefGoogle Scholar
  8. 8.
    Lüke C, Walter P, Bartz-Schmidt KU, Brunner R, Heimann K, Sickel W (1997) Effects of antiviral agents on retinal function in vertebrate retina. Adv Ocul Tox 13:107–112Google Scholar
  9. 9.
    Lüke M, Henry M, Lingohr T, Maghsoodian M, Hescheler J, Sickel W, Schneider T (2005) A Ni2+-sensitive component of the ERG-b-wave from the isolated bovine retina is related to E-type voltage-gated Ca2+ channels. Graefes Arch Clin Exp Ophthalmol 243:933–941PubMedCrossRefGoogle Scholar
  10. 10.
    Lüke M, Lüke C, Hescheler J, Schneider T, Sickel W (2005) Effects of phosphodiesterase type 5 inhibitor sildenafil on retinal function in isolated superfused retina. J Ocul Pharmacol Ther 21:305–314PubMedCrossRefGoogle Scholar
  11. 11.
    Green DG, Kapousta-Bruneau NV (1999) Electrophysiological properties of a new isolated rat retina preparation. Vision Res 39:2165–2177PubMedCrossRefGoogle Scholar
  12. 12.
    Sickel W (1972) Electrical and metabolic manifestations of receptor and higher-order neuron activity in vertebrate retina. Adv Exp Med Biol 24:101–118PubMedGoogle Scholar
  13. 13.
    Lüke M, Weiergräber M, Brand C, Siapich SA, Banat M, Hescheler J, Lüke C, Schneider T (2005) The isolated perfused bovine retina - a sensitive tool for pharmacological research on retinal function. Brain Res Brain Res Protoc 16:27–36PubMedCrossRefGoogle Scholar
  14. 14.
    Baylor DA (1987) Photoreceptor signals and vision. Proctor Lecture. Invest Ophthalmol Vis Sci 28:34–49PubMedGoogle Scholar
  15. 15.
    Taylor WR, Morgans C (1998) Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri. Visual Neurosci 15:541–552Google Scholar
  16. 16.
    McRory JE, Hamid J, Doering CJ, Garcia E, Parker R, Hamming K, Chen L, Hildebrand M, Beedle AM, Feldcamp L, Zamponi GW, Snutch TP (2004) The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. J Neurosci 24:1707–1718PubMedCrossRefGoogle Scholar
  17. 17.
    Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM (1998) Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet 19:264–267PubMedCrossRefGoogle Scholar
  18. 18.
    Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BHF, Wutz K, Gutwillinger N, Rüther K, Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nature Genet 19:260–263PubMedCrossRefGoogle Scholar
  19. 19.
    Jalkanen R, Mantyjarvi M, Tobias R, Isosomppi J, Sankila EM, Alitalo T, Bech-Hansen NT (2006) X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 43:699–704PubMedCrossRefGoogle Scholar
  20. 20.
    Jalkanen R, Bech-Hansen NT, Tobias R, Sankila EM, Mantyjarvi M, Forsius H, de la Chapelle A, Alitalo T (2007) A novel CACNA1F gene mutation causes aland island eye disease. Invest Ophthalmol Vis Sci 48:2498–2502PubMedCrossRefGoogle Scholar
  21. 21.
    Banat M, Lüke M, Siapich SA, Hescheler J, Weiergräber M, Schneider T (2008) The dihydropyridine isradipine inhibits the murine but not the bovine A-wave response of the electroretinogram. Acta Ophthalmol 86:676–682PubMedCrossRefGoogle Scholar
  22. 22.
    Burns ME, Baylor DA (2001) Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 24:779–805PubMedCrossRefGoogle Scholar
  23. 23.
    Kapousta-Bruneau NV (2000) Opposite effects of GABA(A) and GABA(C) receptor antagonists on the b-wave of ERG recorded from the isolated rat retina. Vision Res 40:1653–1665PubMedCrossRefGoogle Scholar
  24. 24.
    Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergräber M, Hescheler J, Smyth N, Schneider T (2002) Disturbances in glucose-tolerance, insulin-release and stress-induced hyperglycemia upon disruption of the Cav2.3 (α1E) subunit of voltage-gated Ca2+ channels. Mol Endocrinol 16:884–895PubMedCrossRefGoogle Scholar
  25. 25.
    Sickel W (1965) Respiratory and electrical responses to light stimulation in the retina of the frog. Science 148:648–651PubMedCrossRefGoogle Scholar
  26. 26.
    Green DG, Guo H, Pillers DA (2004) Normal photoresponses and altered b-wave responses to APB in the mdx(Cv3) mouse isolated retina ERG supports role for dystrophin in synaptic transmission. Vis Neurosci 21:739–747PubMedCrossRefGoogle Scholar
  27. 27.
    Ames A III, Li YY, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12:840–853PubMedGoogle Scholar
  28. 28.
    Lopez L, Sannita WG (1997) Glucose availability and the electrophysiology of the human visual system. Clin Neurosci 4:336–340PubMedGoogle Scholar
  29. 29.
    Niemeyer G (1997) Glucose concentration and retinal function. Clin Neurosci 4:327–335PubMedGoogle Scholar
  30. 30.
    Siapich SA, Banat M, Wrubel H, Albanna W, Hescheler J, Lüke M, Schneider T (2009) Antagonists of ionotropic GABA-receptors impair the NiCl2 mediated stimulation of the ERG b-wave amplitude from the isolated superfused vertebrate retina. Acta Ophthalmol [in press]Google Scholar
  31. 31.
    Lansel N, Niemeyer G (1997) Effects of insulin under normal and low glucose on retinal electrophysiology in the perfused cat eye. Invest Ophthalmol Vis Sci 38:792–799PubMedGoogle Scholar
  32. 32.
    Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36PubMedCrossRefGoogle Scholar
  33. 33.
    Wong AA, Brown RE (2007) Age-related changes in visual acuity, learning and memory in C57BL/6J and DBA/2J mice. Neurobiol Aging 28:1577–1593PubMedCrossRefGoogle Scholar
  34. 34.
    Puk O, Dalke C, Hrabe dA, Graw J (2008) Variation of the response to the optokinetic drum among various strains of mice. Front Biosci 13:6269–6275PubMedCrossRefGoogle Scholar
  35. 35.
    Wong AA, Brown RE (2006) Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes Brain Behav 5:389–403PubMedCrossRefGoogle Scholar
  36. 36.
    Pinto LH, Enroth-Cugell C (2000) Tests of the mouse visual system. Mamm Genome 11:531–536PubMedCrossRefGoogle Scholar
  37. 37.
    Ames A III, BS GURIAN (1963) Effects of glucose and oxygen deprivation on function of isolated mammalian retina. J Neurophysiol 26:617–634PubMedGoogle Scholar
  38. 38.
    Bui BV, Kalloniatis M, Vingrys AJ (2003) The contribution of glycolytic and oxidative pathways to retinal photoreceptor function. Invest Ophthalmol Vis Sci 44:2708–2715PubMedCrossRefGoogle Scholar
  39. 39.
    Heidelberger R, Thoreson WB, Witkovsky P (2005) Synaptic transmission at retinal ribbon synapses. Prog Retin Eye Res 24:682–720PubMedCrossRefGoogle Scholar
  40. 40.
    Barnes S, Kelly ME (2002) Calcium channels at the photoreceptor synapse. Adv Exp Med Biol 514:465–476PubMedGoogle Scholar
  41. 41.
    Vigh J, Lasater EM (2004) L-type calcium channels mediate transmitter release in isolated, wide-field retinal amacrine cells. Vis Neurosci 21:129–134PubMedGoogle Scholar
  42. 42.
    Hartveit E (1999) Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. J Neurophysiol 81:2923–2936PubMedGoogle Scholar
  43. 43.
    Pan ZH, Hu HJ, Perring P, Andrade R (2001) T-type Ca2+ channels mediate neurotransmitter release in retinal bipolar cells. Neuron 32:89–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Walid Albanna
    • 2
  • Mohammed Banat
    • 2
  • Nadeen Albanna
    • 2
  • Maged Alnawaiseh
    • 2
  • Sergej A. Siapich
    • 2
    • 3
  • Peter Igelmund
    • 2
  • Marco Weiergräber
    • 1
    • 2
  • Matthias Lüke
    • 2
    • 4
  • Toni Schneider
    • 1
    • 2
    Email author
  1. 1.Center for Molecular Medicine Cologne (CMMC)University of CologneKölnGermany
  2. 2.Institute of NeurophysiologyUniversity of CologneKölnGermany
  3. 3.Department of OphthalmologyRWTH Aachen UniversityAachenGermany
  4. 4.University Eye HospitalUniversity of LübeckLübeckGermany

Personalised recommendations