Involvement of Müller glial cells in epiretinal membrane formation

  • Andreas BringmannEmail author
  • Peter Wiedemann
Review Article



Proliferative retinopathies are considered to represent maladapted retinal wound repair processes driven by growth factor- and cytokine-induced overstimulation of proliferation, migration, extracellular matrix production and contraction of retinal cells. The formation of neovascular membranes represents an attempt to reoxygenize non-perfused retinal areas. Müller glial cells play a crucial role in the pathogenesis of proliferative retinopathies. This review summarizes the present knowledge regarding the role of Müller cells in periretinal membrane formation, especially in the early steps of epiretinal membrane formation, which involve an interaction of inflammatory and glial cells, and gives a survey of the factors which are suggested to be implicated in the induction of Müller cell gliosis and proliferation.


Alterations in the membrane conductance of Müller cells suggest that Müller cells may alter their phenotype into progenitor-like cells in the course of proliferative retinopathies; transdifferentiated Müller cells may have great impact for the development of new cell-based therapies.


Müller cell Epiretinal membrane Neovascularization PVR PDR Growth factor 



Some of the work presented in this review was conducted with grants from the Deutsche Forschungsgemeinschaft (GRK 1097/1) and the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) at the Faculty of Medicine of the University of Leipzig (C35).


  1. 1.
    Ryan SJ (1985) The pathophysiology of proliferative vitreoretinopathy in its management. Am J Ophthalmol 100:188–193PubMedGoogle Scholar
  2. 2.
    Fisher SK, Anderson DH (1994) Cellular effects of detachment on the neural retina and the retinal pigment epithelium. In: Glaser B, Ryan SJ (eds) Retina. Surgical retina, vol 3. Mosby–Year Book Inc., St. Louis, pp 2035–2061Google Scholar
  3. 3.
    Machemer R (1978) Pathogenesis and classification of massive periretinal proliferation. Br J Ophthalmol 62:737–747. doi: 10.1136/bjo.62.11.737 PubMedGoogle Scholar
  4. 4.
    Wiedemann P, Weller M (1988) The pathophysiology of proliferative vitreoretinopathy. Acta Ophthalmol (Copenh) 189:4–15Google Scholar
  5. 5.
    Hui YN, Goodnight R, Zhang XJ, Sorgente N, Ryan SJ (1988) Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol 106:1280–1285PubMedGoogle Scholar
  6. 6.
    Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43:3–18. doi: 10.1016/S0039-6257(98)00023-X PubMedGoogle Scholar
  7. 7.
    Spitznas M, Leuenberger R (1977) Primary epiretinal gliosis. Klin Monatsbl Augenheilkd 171:410–420PubMedGoogle Scholar
  8. 8.
    Rentsch FJ (1977) The ultrastructure of preretinal macular fibrosis. Albrecht Von Graefes Arch Klin Exp Ophthalmol 203:321–337. doi: 10.1007/BF00409837 PubMedGoogle Scholar
  9. 9.
    Szamier RB (1981) Ultrastructure of the preretinal membrane in retinitis pigmentosa. Invest Ophthalmol Vis Sci 21:227–236PubMedGoogle Scholar
  10. 10.
    McLeod D, Hiscott PS, Grierson I (1987) Age-related cellular proliferation at the vitreoretinal juncture. Eye 1:263–281PubMedGoogle Scholar
  11. 11.
    Garcia-Arumi J, Corcostegui B, Tallada N, Salvador F (1994) Epiretinal membranes in Tersons syndrome. A clinicopathologic study. Retina 14:351–355. doi: 10.1097/00006982-199414040-00011 PubMedGoogle Scholar
  12. 12.
    Heidenkummer HP, Kampik A (1996) Morphologic analysis of epiretinal membranes in surgically treated idiopathic macular foramina. Results of light and electron microscopy. Ophthalmologe 93:675–679. doi: 10.1007/s003470050057 PubMedGoogle Scholar
  13. 13.
    Weller M, Wiedemann P, Heimann K (1990) Proliferative vitreoretinopathy—is it anything more than wound healing at the wrong place? Int Ophthalmol 14:105–117. doi: 10.1007/BF00154210 PubMedGoogle Scholar
  14. 14.
    Wiedemann P (1992) Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration. Surv Ophthalmol 36:373–384. doi: 10.1016/0039-6257(92)90115-A PubMedGoogle Scholar
  15. 15.
    Campochiaro PA (1997) Pathogenic mechanisms in proliferative vitreoretinopathy. Arch Ophthalmol 115:237–241PubMedGoogle Scholar
  16. 16.
    Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424. doi: 10.1016/j.preteyeres.2006.05.003 PubMedGoogle Scholar
  17. 17.
    Caspi RR, Roberge FG (1989) Glial cells as suppressor cells: characterization of the inhibitory function. J Autoimmun 2:709–722. doi: 10.1016/S0896-8411(89)80009-5 PubMedGoogle Scholar
  18. 18.
    Drescher KM, Whittum-Hudson JA (1996) Modulation of immune-associated surface markers and cytokine production by murine retinal glial cells. J Neuroimmunol 64:71–81. doi: 10.1016/0165-5728(95)00156-5 PubMedGoogle Scholar
  19. 19.
    Drescher KM, Whittum-Hudson JA (1997) Evidence for induction of interferon-α and interferon-ß in retinal glial cells of Müller. Virology 234:309–316. doi: 10.1006/viro.1997.8661 PubMedGoogle Scholar
  20. 20.
    Mano T, Puro DG (1990) Phagocytosis by human retinal glial cells in culture. Invest Ophthalmol Vis Sci 31:1047–1055PubMedGoogle Scholar
  21. 21.
    Stolzenburg JU, Haas J, Härtig W, Paulke BR, Wolburg H, Reichelt W, Chao TI, Wolff JR, Reichenbach A (1992) Phagocytosis of latex beads by rabbit retinal Müller (glial) cells in vitro. J Hirnforsch 33:557–564PubMedGoogle Scholar
  22. 22.
    Francke M, Makarov F, Kacza J, Wendt S, Gärtner U, Faude F, Wiedemann P, Reichenbach A (2001) Retinal pigment epithelium melanin granules are phagocytozed by Müller glial cells in experimental retinal detachment. J Neurocytol 30:131–136. doi: 10.1023/A:1011987107034 PubMedGoogle Scholar
  23. 23.
    Charteris DG, Sethi CS, Lewis GP, Fisher SK (2002) Proliferative vitreoretinopathy—developments in adjunctive treatment and retinal pathology. Eye 16:369–374. doi: 10.1038/sj.eye.6700194 PubMedGoogle Scholar
  24. 24.
    Charteris DG, Downie J, Aylward GW, Sethi C, Luthert P (2007) Intraretinal and periretinal pathology in anterior proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 245:93–100. doi: 10.1007/s00417-006-0323-5 PubMedGoogle Scholar
  25. 25.
    Fisher SK, Lewis GP (2003) Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897. doi: 10.1016/S0042-6989(02)00680-6 PubMedGoogle Scholar
  26. 26.
    Kimura H, Spee C, Sakamoto T, Hinton DR, Ogura Y, Tabata Y, Ikada Y, Ryan SJ (1999) Cellular responses in subretinal neovascularization induced by bFGF-impregnated microspheres. Invest Ophthalmol Vis Sci 40:524–528PubMedGoogle Scholar
  27. 27.
    Wu KH, Madigan MC, Billson FA, Penfold PL (2003) Differential expression of GFAP in early vs late AMD: a quantitative analysis. Br J Ophthalmol 87:1159–1166. doi: 10.1136/bjo.87.9.1159 PubMedGoogle Scholar
  28. 28.
    Sullivan R, Penfold P, Pow DV (2003) Neuronal migration and glial remodeling in degenerating retinas of aged rats and in nonneovascular AMD. Invest Ophthalmol Vis Sci 44:856–865. doi: 10.1167/iovs.02-0416 PubMedGoogle Scholar
  29. 29.
    Ramírez JM, Ramírez AI, Salazar JJ, de Hoz R, Triviño A (2001) Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp Eye Res 73:601–615. doi: 10.1006/exer.2001.1061 PubMedGoogle Scholar
  30. 30.
    Bek T (1997) Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol Scand 75:388–392PubMedCrossRefGoogle Scholar
  31. 31.
    Bek T (1998) Capillary closure secondary to retinal vein occlusion. A morphological, histopathological, and immunohistochemical study. Acta Ophthalmol Scand 76:643–648. doi: 10.1034/j.1600-0420.1998.760601.x PubMedGoogle Scholar
  32. 32.
    Kono T, Kohno T, Inomata H (1995) Epiretinal membrane formation. Light and electron microscopic study in an experimental rabbit model. Arch Ophthalmol 113:359–363PubMedGoogle Scholar
  33. 33.
    Cantó Soler VM, Gallo JE, Dodds RA, Suburo AM (2002) A mouse model of proliferative vitreoretinopathy induced by dispase. Exp Eye Res 75:491–504. doi: 10.1006/exer.2002.2031 PubMedGoogle Scholar
  34. 34.
    Hiscott PS, Grierson I, McLeod D (1985) Natural history of fibrocellular epiretinal membranes: a quantitative, autoradiographic, and immunohistochemical study. Br J Ophthalmol 11:810–823. doi: 10.1136/bjo.69.11.810 Google Scholar
  35. 35.
    Guidry C (2005) The role of Müller cells in fibrocontractive retinal disorders. Prog Retin Eye Res 24:75–86. doi: 10.1016/j.preteyeres.2004.07.001 PubMedGoogle Scholar
  36. 36.
    Sramek SJ, Wallow IH, Stevens TS, Nork TM (1989) Immunostaining of preretinal membranes for actin, fibronectin, and glial fibrillary acidic protein. Ophthalmology 96:835–841PubMedGoogle Scholar
  37. 37.
    McGillem GS, Dacheux RF (1999) Rabbit retinal Müller cells undergo antigenic changes in response to experimentally induced proliferative vitreoretinopathy. Exp Eye Res 68:617–627. doi: 10.1006/exer.1998.0648 PubMedGoogle Scholar
  38. 38.
    Arora PD, McCulloch CA (1994) Dependence of collagen remodeling on α-smooth muscle actin expression by fibroblasts. J Cell Physiol 159:161–175. doi: 10.1002/jcp. 1041590120 PubMedGoogle Scholar
  39. 39.
    Ehrenberg M, Thresher RJ, Machemer R (1984) Vitreous hemorrhage nontoxic to retina as a stimulator of glial and fibrous proliferation. Am J Ophthalmol 97:611–626PubMedGoogle Scholar
  40. 40.
    Kono T, Kato H, Oshima K (1998) Immunohistochemical study of retinal Müller cell response in experimental epiretinal membrane formation. Nippon Ganka Gakkai Zasshi 102:22–27PubMedGoogle Scholar
  41. 41.
    Schubert HD (1989) Cystoid macular edema: the apparent role of mechanical factors. Prog Clin Biol Res 312:277–291PubMedGoogle Scholar
  42. 42.
    Pournaras CJ (1995) Retinal oxygen distribution: its role in the physiopathology of vasoproliferative microangiopathies. Retina 15:332–347. doi: 10.1097/00006982-199515040-00011 PubMedGoogle Scholar
  43. 43.
    Kodal H, Weick M, Moll V, Biedermann B, Reichenbach A, Bringmann A (2000) Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Müller glial cells. Invest Ophthalmol Vis Sci 41:4262–4267PubMedGoogle Scholar
  44. 44.
    Bringmann A, Francke M, Pannicke T, Biedermann B, Kodal H, Faude F, Reichelt W, Reichenbach A (2000) Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Müller cells. Glia 29:35–44. doi:10.1002/(SICI)1098-1136(20000101)29:1<35::AID-GLIA4>3.0.CO;2-APubMedGoogle Scholar
  45. 45.
    Hollborn M, Tenckhoff S, Jahn K, Iandiev I, Biedermann B, Schnurrbusch UEK, Limb GA, Reichenbach A, Wolf S, Wiedemann P, Kohen L, Bringmann A (2005) Changes in retinal gene expression in proliferative vitreoretinopathy: glial cell expression of HB-EGF. Mol Vis 11:397–413PubMedGoogle Scholar
  46. 46.
    Hollborn M, Francke M, Iandiev I, Bühner E, Foja C, Kohen L, Reichenbach A, Wiedemann P, Bringmann A, Uhlmann S (2008) Early activation of inflammation- and immune response-related genes after experimental detachment of the porcine retina. Invest Ophthalmol Vis Sci 49:1262–1273. doi: 10.1167/iovs.07-0879 PubMedGoogle Scholar
  47. 47.
    Nakazawa T, Matsubara A, Noda K, Hisatomi T, She H, Skondra D, Miyahara S, Sobrin L, Thomas KL, Chen DF, Grosskreutz CL, Hafezi-Moghadam A, Miller JW (2006) Characterization of cytokine responses to retinal detachment in rats. Mol Vis 12:867–878PubMedGoogle Scholar
  48. 48.
    Nishizono H, Murata Y, Tanaka M, Soji T, Herbert DC (1993) Evidence that Müller cells can phagocytize egg-lecithin-coated silicone particles. Tissue Cell 25:305–310. doi: 10.1016/0040-8166(93)90028-J PubMedGoogle Scholar
  49. 49.
    Ando N, Sen HA, Berkowitz BA, Wilson CA, de Juan E Jr (1994) Localization and quantification of blood-retinal barrier breakdown in experimental proliferative vitreoretinopathy. Arch Ophthalmol 112:117–122PubMedGoogle Scholar
  50. 50.
    Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768. doi: 10.1167/iovs.06-1398 PubMedGoogle Scholar
  51. 51.
    Francke M, Uhlmann S, Pannicke T, Goczalik I, Uckermann O, Weick M, Härtig W, Wiedemann P, Reichenbach A, Bringmann A (2003) Experimental dispase-induced retinopathy causes up-regulation of P2Y receptor-mediated calcium responses in Müller glial cells. Ophthalmic Res 35:30–41. doi: 10.1159/000068192 PubMedGoogle Scholar
  52. 52.
    Miller B, Miller H, Patterson R, Ryan SJ (1986) Retinal wound healing. Cellular activity at the vitreoretinal interface. Arch Ophthalmol 104:281–285PubMedGoogle Scholar
  53. 53.
    Miller B, Miller H, Ryan SJ (1986) Experimental epiretinal proliferation induced by intravitreal red blood cells. Am J Ophthalmol 102:188–195. doi: 10.1016/0002-9394(86)90143-1 PubMedGoogle Scholar
  54. 54.
    Lean JS (1987) Origin of simple glial epiretinal membranes in an animal model. Graefes Arch Clin Exp Ophthalmol 225:421–425. doi: 10.1007/BF02334169 PubMedGoogle Scholar
  55. 55.
    Kono T, Hurukawa H, Higashi M, Akiya S, Kohno T (1990) Experimental studies of retinal glial cell proliferation on retinal surface. Nippon Ganka Gakkai Zasshi 94:333–339PubMedGoogle Scholar
  56. 56.
    Kishi S, Numaga T, Yoneya S, Yamazaki S (1986) Epivascular glia and paravascular holes in normal human retina. Graefes Arch Clin Exp Ophthalmol 224:124–130. doi: 10.1007/BF02141484 PubMedGoogle Scholar
  57. 57.
    Juarez CP, Tso MO, van Heuven WA, Hayreh MS, Hayreh SS (1986) Experimental retinal vascular occlusion. II. A clinico-pathologic correlative study of simultaneous occlusion of central retinal vein and artery. Int Ophthalmol 9:77–87. doi: 10.1007/BF00159836 PubMedGoogle Scholar
  58. 58.
    Zhang X, Cheng M, Chintala SK (2004) Optic nerve ligation leads to astrocyte-associated matrix metalloproteinase-9 induction in the mouse retina. Neurosci Lett 356:140–144. doi: 10.1016/j.neulet.2003.10.084 PubMedGoogle Scholar
  59. 59.
    Faude F, Francke M, Makarov F, Schuck J, Gärtner U, Reichelt W, Wiedemann P, Wolburg H, Reichenbach A (2001) Experimental retinal detachment causes widespread and multilayered degeneration in rabbit retina. J Neurocytol 30:379–390. doi: 10.1023/A:1015061525353 PubMedGoogle Scholar
  60. 60.
    Schlingemann RO (2004) Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 242:91–101. doi: 10.1007/s00417-003-0828-0 PubMedGoogle Scholar
  61. 61.
    Castelnovo L, Dosquet C, Gaudric A, Sahel J, Hicks D (2000) Human platelet suspension stimulates porcine retinal glial proliferation and migration in vitro. Invest Ophthalmol Vis Sci 41:601–609PubMedGoogle Scholar
  62. 62.
    Lai VL, Rana MW (1985) Folding of photoreceptor cell layer: a new form of retinal lesion in rat. Invest Ophthalmol Vis Sci 26:771–774PubMedGoogle Scholar
  63. 63.
    Nour M, Quiambao AB, Peterson WM, Al-Ubaidi MR, Naash MI (2003) P2Y2 receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Invest Ophthalmol Vis Sci 44:4505–4514. doi: 10.1167/iovs.03-0453 PubMedGoogle Scholar
  64. 64.
    Yoshida S, Yoshida A, Ishibashi T, Elner SG, Elner VM (2003) Role of MCP-1 and MIP-1α in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol 73:137–144. doi: 10.1189/jlb.0302117 PubMedGoogle Scholar
  65. 65.
    Yoshida S, Yoshida A, Ishibashi T (2004) Induction of IL-8, MCP-1, and bFGF by TNF-α in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol 242:409–413. doi: 10.1007/s00417-004-0874-2 PubMedGoogle Scholar
  66. 66.
    Yoshida A, Yoshida S, Hata Y, Khalil AK, Ishibashi T, Inomata H (1998) The role of NF-κB in retinal neovascularization in the rat. Possible involvement of cytokine-induced neutrophil chemoattractant (CINC), a member of the interleukin-8 family. J Histochem Cytochem 46:429–436PubMedGoogle Scholar
  67. 67.
    Yoshida A, Yoshida S, Ishibashi T, Kuwano M, Inomata H (1999) Suppression of retinal neovascularization by the NF-κB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 40:1624–1629PubMedGoogle Scholar
  68. 68.
    Shelton MD, Kern TS, Mieyal JJ (2007) Glutaredoxin regulates nuclear factor κ-B and intercellular adhesion molecule in Müller cells: model of diabetic retinopathy. J Biol Chem 282:12467–12474. doi: 10.1074/jbc.M610863200 PubMedGoogle Scholar
  69. 69.
    Datum KH, Zrenner E (1991) Angiotensin-like immunoreactive cells in the chicken retina. Exp Eye Res 53:157–165. doi: 10.1016/0014-4835(91)90069-Q PubMedGoogle Scholar
  70. 70.
    Rong P, Berka JL, Kelly DJ, Alcorn D, Skinner SL (1994) Renin processing and secretion in adrenal and retina of transgenic (mREN-2) 27 rats. Kidney Int 46:1583–1587. doi: 10.1038/ki.1994.453 PubMedGoogle Scholar
  71. 71.
    Berka JL, Stubbs AJ, Wang DZ, DiNicolantonio R, Alcorn D, Campbell DJ, Skinner SL (1995) Renin-containing Müller cells of the retina display endocrine features. Invest Ophthalmol Vis Sci 36:1450–1458PubMedGoogle Scholar
  72. 72.
    Fletcher EL, Phipps JA, Wilkinson-Berka JL (2005) Dysfunction of retinal neurons and glia during diabetes. Clin Exp Optom 88:132–145PubMedGoogle Scholar
  73. 73.
    Senanayake P, Drazba J, Shadrach K, Milsted A, Rungger-Brandle E, Nishiyama K, Miura S, Karnik S, Sears JE, Hollyfield JG (2007) Angiotensin II and its receptor subtypes in the human retina. Invest Ophthalmol Vis Sci 48:3301–3311. doi: 10.1167/iovs.06-1024 PubMedGoogle Scholar
  74. 74.
    Schacke W, Beck KF, Pfeilschifter J, Koch F, Hattenbach LO (2002) Modulation of tissue plasminogen activator and plasminogen activator inhibitor-1 by transforming growth factor-beta in human retinal glial cells. Invest Ophthalmol Vis Sci 43:2799–2805PubMedGoogle Scholar
  75. 75.
    Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of Müller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220. doi: 10.1167/iovs.02-0260 PubMedGoogle Scholar
  76. 76.
    Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-β increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci 42:853–859PubMedGoogle Scholar
  77. 77.
    Caicedo A, Espinosa-Heidmann DG, Piña Y, Hernandez EP, Cousins SW (2005) Blood-derived macrophages infiltrate the retina and activate Müller glial cells under experimental choroidal neovascularization. Exp Eye Res 81:38–47. doi: 10.1016/j.exer.2005.01.013 PubMedGoogle Scholar
  78. 78.
    Caicedo A, Espinosa-Heidmann DG, Hamasaki D, Piña Y, Cousins SW (2005) Photoreceptor synapses degenerate early in experimental choroidal neovascularization. J Comp Neurol 483:263–277. doi: 10.1002/cne.20413 PubMedGoogle Scholar
  79. 79.
    Ishibashi T, Hata Y, Yoshikawa H, Nakagawa K, Sueishi K, Inomata H (1997) Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 235:159–167. doi: 10.1007/BF00941723 PubMedGoogle Scholar
  80. 80.
    Roque RS, Caldwell RB (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3:464–475. doi: 10.1002/glia.440030605 PubMedGoogle Scholar
  81. 81.
    Roque RS, Caldwell RB (1991) Pigment epithelial cell changes precede vascular transformations in the dystrophic rat retina. Exp Eye Res 53:787–798. doi: 10.1016/0014-4835(91)90115-U PubMedGoogle Scholar
  82. 82.
    Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80:602–618PubMedGoogle Scholar
  83. 83.
    Van Horn DL, Aaberg TM, Machemer R, Fenzl R (1977) Glial cell proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 84:383–393PubMedGoogle Scholar
  84. 84.
    Hiscott PS, Grierson I, Trombetta CJ, Rahi AH, Marshall J, McLeod D (1984) Retinal and epiretinal glia-an immunohistochemical study. Br J Ophthalmol 68:698–707. doi: 10.1136/bjo.68.10.698 PubMedGoogle Scholar
  85. 85.
    Nork TM, Ghobrial MW, Peyman GA, Tso MO (1986) Massive retinal gliosis. A reactive proliferation of Müller cells. Arch Ophthalmol 104:1383–1389PubMedGoogle Scholar
  86. 86.
    Nork TM, Wallow IHL, Sramek SJ, Anderson G (1987) Müller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol 105:1424–1429PubMedGoogle Scholar
  87. 87.
    Guerin CJ, Wolfshagen RW, Eifrig DE, Anderson DH (1990) Immunocytochemical identification of Müller’s glia as a component of human epiretinal membranes. Invest Ophthalmol Vis Sci 31:1483–1491PubMedGoogle Scholar
  88. 88.
    Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28PubMedGoogle Scholar
  89. 89.
    Stödtler M, Mietz H, Wiedemann P, Heimann K (1994) Immunohistochemistry of anterior proliferative vitreoretinopathy. Report of 11 cases. Int Ophthalmol 18:323–328. doi: 10.1007/BF00930309 PubMedGoogle Scholar
  90. 90.
    Sethi CS, Lewis GP, Fisher SK, Leitner WP, Mann DL, Luthert PJ, Charteris DG (2005) Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 46:329–342. doi: 10.1167/iovs.03-0518 PubMedGoogle Scholar
  91. 91.
    Kampik A, Green WR, Michels RG, Nase PK (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90:797–809PubMedGoogle Scholar
  92. 92.
    Haritoglou C, Schumann RG, Kampik A, Gandorfer A (2007) Glial cell proliferation under the internal limiting membrane in a patient with cellophane maculopathy. Arch Ophthalmol 125:1301–1302. doi: 10.1001/archopht.125.9.1301-b PubMedGoogle Scholar
  93. 93.
    El-Ghrably IA, Dua HS, Orr GM, Fischer D, Tighe PJ (1999) Detection of cytokine mRNA production in infiltrating cells in proliferative vitreoretinopathy using reverse transcription polymerase chain reaction. Br J Ophthalmol 83:1296–1299. doi: 10.1136/bjo.83.11.1296 PubMedGoogle Scholar
  94. 94.
    Kon CH, Occleston NL, Aylward GW, Khaw PT (1999) Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. Invest Ophthalmol Vis Sci 40:705–712PubMedGoogle Scholar
  95. 95.
    Roberge FG, Caspi RR, Chan CC, Kuwabara T, Nussenblatt RB (1985) Long-term culture of Müller cells from adult rats in the presence of activated lymphocytes/monocytes products. Curr Eye Res 4:975–982. doi: 10.3109/02713689509000004 PubMedGoogle Scholar
  96. 96.
    Puro DG, Roberge F, Chan C-C (1989) Retinal glial cell proliferation and ion channels: a possible link. Invest Ophthalmol Vis Sci 30:521–529PubMedGoogle Scholar
  97. 97.
    Kosnosky W, Li TH, Pakalnis VA, Fox A, Hunt RC (1994) Interleukin-1ß changes the expression of metalloproteinases in the vitreous humor and induces membrane formation in eyes containing preexisting retinal holes. Invest Ophthalmol Vis Sci 35:4260–4267PubMedGoogle Scholar
  98. 98.
    Cassidy L, Barry P, Shaw C, Duffy J, Kennedy S (1998) Platelet derived growth factor and fibroblast growth factor basic levels in the vitreous of patients with vitreoretinal disorders. Br J Ophthalmol 82:181–185. doi: 10.1136/bjo.82.2.181 PubMedGoogle Scholar
  99. 99.
    Andrews A, Balciunaite E, Leong FL, Tallquist M, Soriano P, Refojo M, Kazlauskas A (1999) Platelet-derived growth factor plays a key role in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:2683–2689PubMedGoogle Scholar
  100. 100.
    Briggs MC, Grierson I, Hiscott P, Hunt JA (2000) Active scatter factor (HGF/SF) in proliferative vitreoretinal disease. Invest Ophthalmol Vis Sci 41:3085–3094PubMedGoogle Scholar
  101. 101.
    Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J (2000) Hepatocyte growth factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol 129:678–680. doi: 10.1016/S0002-9394(00)00360-3 PubMedGoogle Scholar
  102. 102.
    Ikuno Y, Leong F-L, Kazlauskas A (2000) Attenuation of experimental proliferative vitreoretinopathy by inhibiting the platelet-derived growth factor receptor. Invest Ophthalmol Vis Sci 41:3107–3116PubMedGoogle Scholar
  103. 103.
    Mori K, Gehlbach P, Ando A, Dyer G, Lipinsky E, Chaudhry AG, Hackett SF, Campochiaro PA (2002) Retina-specific expression of PDGF-B versus PDGF-A: vascular versus nonvascular proliferative retinopathy. Invest Ophthalmol Vis Sci 43:2001–2006PubMedGoogle Scholar
  104. 104.
    D’Amore PA (1994) Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 35:3974–3979PubMedGoogle Scholar
  105. 105.
    Miller JW, Adamis AP, Shima DT, D’Amore PA, Moulton RS, O’Reilly MS, Folkman J, Dvorak HF, Brown LF, Berse B, Yeo TK, Yeo KT (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145:574–584PubMedGoogle Scholar
  106. 106.
    Soubrane G, Cohen SY, Delayre T, Tassin J, Hartmann MP, Coscas GJ, Courtois Y, Jeanny JC (1994) Basic fibroblast growth factor experimentally induced choroidal angiogenesis in the minipig. Curr Eye Res 13:183–195. doi: 10.3109/02713689408995776 PubMedGoogle Scholar
  107. 107.
    Perry J, Du J, Kjeldbye H, Gouras P (1995) The effects of bFGF on RCS rat eyes. Curr Eye Res 14:585–592. doi: 10.3109/02713689508998406 PubMedGoogle Scholar
  108. 108.
    Yan Q, Li Y, Hendrickson A, Sage EH (2001) Regulation of retinal capillary cells by basic fibroblast growth factor, vascular endothelial growth factor, and hypoxia. In Vitro Cell Dev Biol Anim 37:45–49. doi:10.1290/1071-2690(2001)037<0045:RORCCB>2.0.CO;2PubMedGoogle Scholar
  109. 109.
    Simó R, Carrasco E, García-Ramírez M, Hernández C (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98. doi: 10.2174/157339906775473671 PubMedGoogle Scholar
  110. 110.
    Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J (2001) Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett 489:270–276. doi: 10.1016/S0014-5793(01)02110-X PubMedGoogle Scholar
  111. 111.
    Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134:348–353. doi: 10.1016/S0002-9394(02)01568-4 PubMedGoogle Scholar
  112. 112.
    Duh EJ, Yang HS, Suzuma I, Miyagi M, Youngman E, Mori K, Katai M, Yan L, Suzuma K, West K, Davarya S, Tong P, Gehlbach P, Pearlman J, Crabb JW, Aiello LP, Campochiaro PA, Zack DJ (2002) Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci 43:821–829PubMedGoogle Scholar
  113. 113.
    Duh EJ, Yang HS, Haller JA, De Juan E, Humayun MS, Gehlbach P, Melia M, Pieramici D, Harlan JB, Campochiaro PA, Zack DJ (2004) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 137:668–674PubMedGoogle Scholar
  114. 114.
    Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Inverse levels of pigment epithelium-derived factor and vascular endothelial growth factor in the vitreous of eyes with rhegmatogenous retinal detachment and proliferative vitreoretinopathy. Am J Ophthalmol 133:851–852. doi: 10.1016/S0002-9394(02)01406-X PubMedGoogle Scholar
  115. 115.
    Priglinger SG, May CA, Neubauer AS, Alge CS, Schönfeld CL, Kampik A, Welge-Lussen U (2003) Tissue transglutaminase as a modifying enzyme of the extracellular matrix in PVR membranes. Invest Ophthalmol Vis Sci 44:355–364. doi: 10.1167/iovs.02-0224 PubMedGoogle Scholar
  116. 116.
    Gamulescu MA, Chen Y, He S, Spee C, Jin M, Ryan SJ, Hinton DR (2006) Transforming growth factor ß2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor. Exp Eye Res 83:212–222. doi: 10.1016/j.exer.2005.12.007 PubMedGoogle Scholar
  117. 117.
    He PM, He S, Garner JA, Ryan SJ, Hinton DR (1998) Retinal pigment epithelial cells secrete and respond to hepatocyte growth factor. Biochem Biophys Res Commun 249:253–257. doi: 10.1006/bbrc.1998.9087 PubMedGoogle Scholar
  118. 118.
    Lashkari K, Rahimi N, Kazlauskas A (1999) Hepatocyte growth factor receptor in human RPE cells: implications in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:149–156PubMedGoogle Scholar
  119. 119.
    Shibuki H, Katai N, Kuroiwa S, Kurokawa T, Arai J, Matsumoto K, Nakamura T, Yoshimura N (2002) Expression and neuroprotective effect of hepatocyte growth factor in retinal ischemia-reperfusion injury. Invest Ophthalmol Vis Sci 43:528–536PubMedGoogle Scholar
  120. 120.
    Hollborn M, Krauß C, Iandiev I, Yafai Y, Tenckhoff S, Bigl M, Schnurrbusch UEK, Limb GA, Reichenbach A, Kohen L, Wolf S, Wiedemann P, Bringmann A (2004) Glial cell expression of hepatocyte growth factor in vitreoretinal proliferative disease. Lab Invest 84:963–972. doi: 10.1038/labinvest.3700121 PubMedGoogle Scholar
  121. 121.
    Umeda N, Ozaki H, Hayashi H, Kondo H, Uchida H, Oshima K (2002) Non-paralleled increase of hepatocyte growth factor and vascular endothelial growth factor in the eyes with angiogenic and nonangiogenic fibroproliferation. Ophthalmic Res 34:43–47. doi: 10.1159/000048324 PubMedGoogle Scholar
  122. 122.
    Hinton DR, He S, Jin ML, Barron E, Ryan SJ (2002) Novel growth factors involved in the pathogenesis of proliferative vitreoretinopathy. Eye 16:422–428. doi: 10.1038/sj.eye.6700190 PubMedGoogle Scholar
  123. 123.
    Cui JZ, Chiu A, Maberley D, Ma P, Samad A, Matsubara JA (2007) Stage specificity of novel growth factor expression during development of proliferative vitreoretinopathy. Eye 21:200–208. doi: 10.1038/sj.eye.6702169 PubMedGoogle Scholar
  124. 124.
    Ikuno Y, Kazlauskas A (2002) An in vivo gene therapy approach for experimental proliferative vitreoretinopathy using the truncated platelet-derived growth factor α receptor. Invest Ophthalmol Vis Sci 43:2406–2411PubMedGoogle Scholar
  125. 125.
    Zheng Y, Ikuno Y, Ohj M, Kusaka S, Jiang R, Cekic O, Sawa M, Tano Y (2003) Platelet-derived growth factor receptor kinase inhibitor AG1295 and inhibition of experimental proliferative vitreoretinopathy. Jpn J Ophthalmol 47:158–165. doi: 10.1016/S0021-5155(02)00698-6 PubMedGoogle Scholar
  126. 126.
    Seo MS, Okamoto N, Vinores MA, Vinores SA, Hackett SF, Yamada H, Yamada E, Derevjanik NL, LaRochelle W, Zack DJ, Campochiaro PA (2000) Photoreceptor-specific expression of platelet-derived growth factor-B results in traction retinal detachment. Am J Pathol 157:995–1005PubMedGoogle Scholar
  127. 127.
    Robbins SG, Mixon RN, Wilson DJ, Hart CE, Robertson JE, Westra I, Planck SR, Rosenbaum JT (1994) Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Invest Ophthalmol Vis Sci 35:3649–3663PubMedGoogle Scholar
  128. 128.
    Westra I, Robbins SG, Wilson DJ, Robertson JE, O'Rourke LM, Hart CE, Rosenbaum JT (1995) Time course of growth factor staining in a rabbit model of traumatic tractional retinal detachment. Graefes Arch Clin Exp Ophthalmol 233:573–581. doi: 10.1007/BF00404709 PubMedGoogle Scholar
  129. 129.
    Antoniades HN, Scher CD (1977) Radioimmunoassay of a human growth factor for BALB/c-3 T3 cells: derivation from platelets. Proc Natl Acad Sci USA 74:1973–1977. doi: 10.1073/pnas.74.5.1973 PubMedGoogle Scholar
  130. 130.
    Campochiaro PA, Glaser BM (1985) Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 103:576–579PubMedGoogle Scholar
  131. 131.
    Uchihori Y, Puro DG (1991) Mitogenic and chemotactic effects of platelet-derived growth factor on human retinal glial cells. Invest Ophthalmol Vis Sci 32:2689–2695PubMedGoogle Scholar
  132. 132.
    Harvey AK, Roberge F, Hjelmeland LM (1987) Chemotaxis of rat retinal glia to growth factors found in repairing wounds. Invest Ophthalmol Vis Sci 28:1092–1099PubMedGoogle Scholar
  133. 133.
    De Juan E, Dickson JS, Hjelmeland L (1988) Serum is chemotactic for retinal-derived glial cells. Arch Ophthalmol 106:986–990PubMedGoogle Scholar
  134. 134.
    Hollborn M, Jahn K, Limb GA, Kohen L, Wiedemann P, Bringmann A (2004) Characterization of the basic fibroblast growth factor-evoked proliferation of the human Müller cell line, MIO-M1. Graefes Arch Clin Exp Ophthalmol 242:414–422. doi: 10.1007/s00417-004-0879-x PubMedGoogle Scholar
  135. 135.
    Rosenkranz S, DeMali KA, Gelderloos JA, Bazenet C, Kazlauskas A (1999) Identification of the receptor-associated signaling enzymes that are required for platelet-derived growth factor-AA-dependent chemotaxis and DNA synthesis. J Biol Chem 274:28335–28343. doi: 10.1074/jbc.274.40.28335 PubMedGoogle Scholar
  136. 136.
    Ikuno Y, Leong FL, Kazlauskas A (2002) PI3K and PLCγ play a central role in experimental PVR. Invest Ophthalmol Vis Sci 43:483–489PubMedGoogle Scholar
  137. 137.
    Hollborn M, Bringmann A, Faude F, Wiedemann P, Kohen L (2006) Signaling pathways involved in PDGF-evoked cellular responses in human RPE cells. Biochem Biophys Res Commun 344:912–919. doi: 10.1016/j.bbrc.2006.03.185 PubMedGoogle Scholar
  138. 138.
    Moll V, Weick M, Milenkovic I, Kodal H, Reichenbach A, Bringmann A (2002) P2Y receptor-mediated stimulation of Müller glial DNA synthesis. Invest Ophthalmol Vis Sci 43:766–773PubMedGoogle Scholar
  139. 139.
    Puro DG, Mano T, Chan CC, Fukuda M, Shimada H (1990) Thrombin stimulates the proliferation of human retinal glial cells. Graefes Arch Clin Exp Ophthalmol 228:169–173PubMedGoogle Scholar
  140. 140.
    Burke JM, Smith JM (1981) Retinal proliferation in reponse to vitreous hemoglobin or iron. Invest Ophthalmol Vis Sci 20:582–592PubMedGoogle Scholar
  141. 141.
    Yasuhara T, Shingo T, Date I (2004) The potential role of vascular endothelial growth factor in the central nervous system. Rev Neurosci 15:293–307PubMedGoogle Scholar
  142. 142.
    Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 26:943–954. doi: 10.1002/bies.20092 PubMedGoogle Scholar
  143. 143.
    Yamada H, Yamada E, Hackett SF, Ozaki H, Okamoto N, Campochiaro PA (1999) Hyperoxia causes decreased expression of vascular endothelial growth factor and endothelial cell apoptosis in adult retina. J Cell Physiol 179:149–156. doi:10.1002/(SICI)1097-4652(199905)179:2<149::AID-JCP5>3.0.CO;2-2PubMedGoogle Scholar
  144. 144.
    Tolentino MJ, McLeod DS, Taomoto M, Otsuji T, Adamis AP, Lutty GA (2002) Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am J Ophthalmol 133:373–385. doi: 10.1016/S0002-9394(01)01381-2 PubMedGoogle Scholar
  145. 145.
    Su CY, Chen MT, Wu WS, Wu WC (2000) Concentration of vascular endothelial growth factor in the subretinal fluid of retinal detachment. J Ocul Pharmacol Ther 16:463–469. doi: 10.1089/jop. 2000.16.463 PubMedGoogle Scholar
  146. 146.
    Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW (1997) Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38:36–47PubMedGoogle Scholar
  147. 147.
    Abu El-Asrar AM, Meersschaert A, Dralands L, Missotten L, Geboes K (2004) Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes. Eye 18:306–313. doi: 10.1038/sj.eye.6700642 PubMedGoogle Scholar
  148. 148.
    Chen YS, Hackett SF, Schoenfeld CL, Vinores MA, Vinores SA, Campochiaro PA (1997) Localisation of vascular endothelial growth factor and its receptors to cells of vascular and avascular epiretinal membranes. Br J Ophthalmol 81:919–926Google Scholar
  149. 149.
    Armstrong D, Augustin AJ, Spengler R, Al-Jada A, Nickola T, Grus F, Koch F (1998) Detection of vascular endothelial growth factor and tumor necrosis factor-α in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica 212:410–414. doi: 10.1159/000027378 PubMedGoogle Scholar
  150. 150.
    Toti P, Greco G, Motolese E, Stumpo M, Cardone C, Tosi GM (1999) Cell composition and immunohistochemical detection of VEGF, TGF-ß, and TNFα in proliferative vitreoretinopathy. J Submicrosc Cytol Pathol 31:363–366PubMedGoogle Scholar
  151. 151.
    Aiello LP, Northrup JM, Keyt BA, Takagi H, Iwamoto MA (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544PubMedGoogle Scholar
  152. 152.
    Wen R, Song Y, Cheng T, Matthes MT, Yasumura D, LaVail MM, Steinberg RH (1995) Injury-induced upregulation of bFGF and CNTF mRNAs in the rat retina. J Neurosci 15:7377–7385PubMedGoogle Scholar
  153. 153.
    Brooks SE, Gu X, Kaufmann PM, Marcus DM, Caldwell RB (1998) Modulation of VEGF production by pH and glucose in retinal Müller cells. Curr Eye Res 17:875–882. doi: 10.1076/ceyr.17.9.875.5134 PubMedGoogle Scholar
  154. 154.
    Behzadian MA, Wang XL, Al-Shabrawey M, Caldwell RB (1998) Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-ß. Glia 24:216–225. doi:10.1002/(SICI)1098-1136(199810)24:2<216::AID-GLIA6>3.0.CO;2-1PubMedGoogle Scholar
  155. 155.
    Jingjing L, Xue Y, Agarwal N, Roque RS (1999) Human Müller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 40:752–759PubMedGoogle Scholar
  156. 156.
    Eichler W, Kuhrt H, Hoffmann S, Wiedemann P, Reichenbach A (2000) VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport 11:3533–3537. doi: 10.1097/00001756-200011090-00026 PubMedGoogle Scholar
  157. 157.
    Eichler W, Yafai Y, Kuhrt H, Gräter R, Hoffmann S, Wiedemann P, Reichenbach A (2001) Hypoxia: modulation of endothelial cell proliferation by soluble factors released by retinal cells. Neuroreport 12:4103–4108. doi: 10.1097/00001756-200112210-00048 PubMedGoogle Scholar
  158. 158.
    Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW (2003) Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 969:195–204. doi: 10.1016/S0006-8993(02)03766-6 PubMedGoogle Scholar
  159. 159.
    Hata Y, Nakagawa K, Ishibashi T, Inomata H, Ueno H, Sueishi K (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal glial cells promotes in vitro angiogenesis. Virchows Arch 426:479–486. doi: 10.1007/BF00193171 PubMedGoogle Scholar
  160. 160.
    Eichler W, Yafai Y, Keller T, Wiedemann P, Reichenbach A (2004) PEDF derived from glial Müller cells: a possible regulator of retinal angiogenesis. Exp Cell Res 299:68–78. doi: 10.1016/j.yexcr.2004.05.020 PubMedGoogle Scholar
  161. 161.
    Spranger J, Osterhoff M, Reimann M, Möhlig M, Ristow M, Francis MK, Cristofalo V, Hammes HP, Smith G, Boulton M, Pfeiffer AF (2001) Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50:2641–2645. doi: 10.2337/diabetes.50.12.2641 PubMedGoogle Scholar
  162. 162.
    Boehm BO, Lang G, Volpert O, Jehle PM, Kurkhaus A, Rosinger S, Lang GK, Bouck N (2003) Low content of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor predicts progression of diabetic retinopathy. Diabetologia 46:394–400PubMedGoogle Scholar
  163. 163.
    Zhang SX, Wang JJ, Gao G, Parke K, Ma JX (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37:1–12. doi: 10.1677/jme.1.02008 PubMedGoogle Scholar
  164. 164.
    Paques M, Massin P, Gaudric A (1997) Growth factors and diabetic retinopathy. Diabetes Metab 23:125–130PubMedGoogle Scholar
  165. 165.
    Ikeda T, Puro DG (1995) Regulation of retinal glial cell proliferation by antiproliferative molecules. Exp Eye Res 60:435–443. doi: 10.1016/S0014-4835(05)80100-9 PubMedGoogle Scholar
  166. 166.
    Ikeda T, Waldbillig RJ, Puro DG (1995) Truncation of IGF-I yields two mitogens for retinal Müller glial cells. Brain Res 686:87–92. doi: 10.1016/0006-8993(95)00473-4 PubMedGoogle Scholar
  167. 167.
    Hageman GS, Kirchoff-Rempe MA, Lewis GP, Fisher SK, Anderson DH (1991) Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix. Proc Natl Acad Sci USA 88:6706–6710. doi: 10.1073/pnas.88.15.6706 PubMedGoogle Scholar
  168. 168.
    Raymond PA, Barthel LK, Rounsifer ME (1992) Immunolocalization of basic fibroblast growth factor and its receptor in adult goldfish retina. Exp Neurol 115:73–78. doi: 10.1016/0014-4886(92)90225-F PubMedGoogle Scholar
  169. 169.
    Kostyk SK, D'Amore PA, Herman IM, Wagner JA (1994) Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract. J Neurosci 14:1441–1449PubMedGoogle Scholar
  170. 170.
    Cao W, Wen R, Li F, Cheng T, Steinberg RH (1997) Induction of basic fibroblast growth factor mRNA by basic fibroblast growth factor in Müller cells. Invest Ophthalmol Vis Sci 38:1358–1366PubMedGoogle Scholar
  171. 171.
    Hueber A, Wiedemann P, Esser P, Heimann K (1996) Basic fibroblast growth factor mRNA, bFGF peptide and FGF receptor in epiretinal membranes of intraocular proliferative disorders (PVR and PDR). Int Ophthalmol 20:345–350PubMedGoogle Scholar
  172. 172.
    Geller SF, Lewis GP, Fisher SK (2001) FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells. Invest Ophthalmol Vis Sci 42:1363–1369PubMedGoogle Scholar
  173. 173.
    Kinkl N, Hageman GS, Sahel JA, Hicks D (2002) Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina. Mol Vis 8:149–160PubMedGoogle Scholar
  174. 174.
    Puro DG, Mano T (1991) Modulation of calcium channels in human retinal glial cells by basic fibroblast growth factor: a possible role in retinal pathobiology. J Neurosci 11:1873–1880PubMedGoogle Scholar
  175. 175.
    Small RK, Patel P, Watkins BA (1991) Response of Müller cells to growth factors alters with time in culture. Glia 4:469–483. doi: 10.1002/glia.440040507 PubMedGoogle Scholar
  176. 176.
    Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK (1992) Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 12:3968–3978PubMedGoogle Scholar
  177. 177.
    Hicks D, Courtois Y (1992) Fibroblast growth factor stimulates photoreceptor differentiation in vitro. J Neurosci 12:2022–2033PubMedGoogle Scholar
  178. 178.
    Cheng T, Cao W, Wen R, Steinberg RH, LaVail MM (1998) Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Müller cells. Invest Ophthalmol Vis Sci 39:581–591PubMedGoogle Scholar
  179. 179.
    Anderson DH, Hageman GS, Guerin CJ, Flanders KC (1991) The immuno-localization of transforming growth factor (TGF)-ß1, TGF-ß2, and TGF-ß3 in mammalian retinas. Soc Neurosci Abstr 17:754Google Scholar
  180. 180.
    Pfeffer BA, Flanders KC, Guerin CJ, Danielpour D, Anderson DM (1994) Transforming growth factor-ß2 is the predominant isoform in the neural retina, retinal pigment epithelium-choroid and vitreous of the monkey eye. Exp Eye Res 59:323–333. doi: 10.1006/exer.1994.1114 PubMedGoogle Scholar
  181. 181.
    Behzadian MA, Wang XL, Jiang B, Caldwell RB (1995) Angiostatic role of astrocytes—suppression of vascular endothelial cell growth by TGF-ß and other inhibitory factor(s). Glia 15:480–490. doi: 10.1002/glia.440150411 PubMedGoogle Scholar
  182. 182.
    Eichler W, Yafai Y, Wiedemann P, Reichenbach A (2004) Angiogenesis-related factors derived from retinal glial (Müller) cells in hypoxia. Neuroreport 15:1633–1637. doi: 10.1097/01.wnr.0000133071.00786.a4 PubMedGoogle Scholar
  183. 183.
    Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N (1998) Thrombospondin-1 is a major activator of TGF-ß1 in vivo. Cell 93:1159–1170. doi: 10.1016/S0092-8674(00)81460-9 PubMedGoogle Scholar
  184. 184.
    Ikeda T, Homma Y, Nisida K, Hirase K, Sotozono C, Kinoshita S, Puro DG (1998) Expression of transforming growth factor-ß s and their receptors by human retinal glial cells. Curr Eye Res 17:546–550. doi: 10.1076/ceyr.17.5.546.5197 PubMedGoogle Scholar
  185. 185.
    Guerin CJ, Hu L, Scicli G, Scicli AG (2001) Transforming growth factor-ß in experimentally detached retina and periretinal membranes. Exp Eye Res 73:753–764. doi: 10.1006/exer.2001.1095 PubMedGoogle Scholar
  186. 186.
    Abu-El-Asrar AM, van den Steen PE, Al-Amro SA, Missotten L, Opdenakker G, Geboes K (2007) Expression of angiogenic and fibrogenic factors in proliferative vitreoretinal disorders. Int Ophthalmol 27:11–22. doi: 10.1007/s10792-007-9053-x PubMedGoogle Scholar
  187. 187.
    Limb GA, Miller K, Chignell AH, Williamson TH, Hollifield RD, Dumonde DC (1997) Metalloproteinases and TIMP-1 in proliferative vitreoretinopathy. Biochem Soc Trans 25:S234Google Scholar
  188. 188.
    Kon CH, Occleston NL, Charteris D, Daniels J, Aylward GW, Khaw PT (1998) A prospective study of matrix metalloproteinases in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39:1524–1529PubMedGoogle Scholar
  189. 189.
    Webster L, Chignell AH, Limb GA (1999) Predominance of MMP-1 and MMP-2 in epiretinal and subretinal membranes of proliferative vitreoretinopathy. Exp Eye Res 68:91–98. doi: 10.1006/exer.1998.0585 PubMedGoogle Scholar
  190. 190.
    Salzmann J, Limb GA, Khaw PT, Gregor ZJ, Webster L, Chignell AH, Charteris DG (2000) Matrix metalloproteinases and their natural inhibitors in fibrovascular membranes of proliferative diabetic retinopathy (PDR). Br J Ophthalmol 84:1091–1096. doi: 10.1136/bjo.84.10.1091 PubMedGoogle Scholar
  191. 191.
    Noda K, Ishida S, Inoue M, Obata K, Oguchi Y, Okada Y, Ikeda E (2003) Production and activation of matrix metalloproteinase-2 in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 44:2163–2170. doi: 10.1167/iovs.02-0662 PubMedGoogle Scholar
  192. 192.
    Limb GA, Daniels JT, Pleass R, Charteris DG, Luthert PJ, Khaw PT (2002) Differential expression of matrix metalloproteinases 2 and 9 by glial Müller cells: response to soluble and extracellular matrix-bound tumor necrosis factor-α. Am J Pathol 160:1847–1855PubMedGoogle Scholar
  193. 193.
    Noda K, Ishida S, Shinoda H, Koto T, Aoki T, Tsubota K, Oguchi Y, Okada Y, Ikeda E (2005) Hypoxia induces the expression of membrane-type 1 matrix metalloproteinase in retinal glial cells. Invest Ophthalmol Vis Sci 46:3817–3824. doi: 10.1167/iovs.04-1528 PubMedGoogle Scholar
  194. 194.
    Limb GA, Little BC, Meager A, Ogilvie JA, Wolstencroft RA, Franks WA, Chignell AH, Dumonde DC (1991) Cytokines in proliferative vitreoretinopathy. Eye 5:686–693PubMedGoogle Scholar
  195. 195.
    Roberge FG, Caspi RR, Nussenblatt RB (1988) Glial retinal Müller cells produce IL-1 activity and have a dual effect on autoimmune T helper lymphocytes. J Immunol 140:2193–2196PubMedGoogle Scholar
  196. 196.
    Benson MT, Shepherd L, Rees RC, Rennie IG (1992) Production of interleukin-6 by human retinal pigment epithelium in vitro and its regulation by other cytokines. Curr Eye Res 11(Suppl):173–179. doi: 10.3109/02713689208999529 PubMedGoogle Scholar
  197. 197.
    De Kozak Y, Naud MC, Bellot J, Faure JP, Hicks D (1994) Differential tumor necrosis factor expression by resident retinal cells from experimental uveitis-susceptible and -resistant rat strains. J Neuroimmunol 55:1–9. doi: 10.1016/0165-5728(94)90141-4 PubMedGoogle Scholar
  198. 198.
    Drescher KM, Whittum-Hudson JA (1996) Herpes simplex virus type 1 alters transcript levels of tumor necrosis factor-α and interleukin-6 in retinal glial cells. Invest Ophthalmol Vis Sci 37:2302–2312PubMedGoogle Scholar
  199. 199.
    Cotinet A, Goureau O, Thillaye-Goldenberg B, Naud MC, de Kozak Y (1997) Differential tumor necrosis factor and nitric oxide production in retinal Müller glial cells from C3H/HeN and C3H/HeJ mice. Ocul Immunol Inflamm 5:111–116PubMedCrossRefGoogle Scholar
  200. 200.
    El-Ghrably IA, Dua HS, Orr GM, Fischer D, Tighe PJ (2001) Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy. Br J Ophthalmol 85:461–470. doi: 10.1136/bjo.85.4.461 PubMedGoogle Scholar
  201. 201.
    Sappington RM, Chan M, Calkins DJ (2006) Interleukin-6 protects retinal ganglion cells from pressure-induced death. Invest Ophthalmol Vis Sci 47:2932–2942. doi: 10.1167/iovs.05-1407 PubMedGoogle Scholar
  202. 202.
    Nakatani M, Seki T, Shinohara Y, Taki C, Nishimura S, Takaki A, Shioda S (2006) Pituitary adenylate cyclase-activating peptide (PACAP) stimulates production of interleukin-6 in rat Müller cells. Peptides 27:1871–1876. doi: 10.1016/j.peptides.2005.12.011 PubMedGoogle Scholar
  203. 203.
    Seki T, Hinohara Y, Taki C, Nakatani M, Ozawa M, Nishimura S, Takaki A, Itho H, Takenoya F, Shioda S (2006) PACAP stimulates the release of interleukin-6 in cultured rat Müller cells. Ann N Y Acad Sci 1070:535–539. doi: 10.1196/annals.1317.043 PubMedGoogle Scholar
  204. 204.
    Yoshida S, Sotozono C, Ikeda T, Kinoshita S (2001) Interleukin-6 (IL-6) production by cytokine-stimulated human Müller cells. Curr Eye Res 22:341–347. doi: 10.1076/ceyr.22.5.341.5498 PubMedGoogle Scholar
  205. 205.
    Nakamura N, Hasegawa G, Obayashi H, Yamazaki M, Ogata M, Nakano K, Yoshikawa T, Watanabe A, Kinoshita S, Fujinami A, Ohta M, Imamura Y, Ikeda T (2003) Increased concentration of pentosidine, an advanced glycation end product, and interleukin-6 in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Res Clin Pract 61:93–101. doi: 10.1016/S0168-8227(03)00109-8 PubMedGoogle Scholar
  206. 206.
    Mendonca Torres PM, de Araujo EG (2001) Interleukin-6 increases the survival of retinal ganglion cells in vitro. J Neuroimmunol 117:43–50. doi: 10.1016/S0165-5728(01)00303-4 PubMedGoogle Scholar
  207. 207.
    Sanchez RN, Chan CK, Garg S, Kwong JM, Wong MJ, Sadun AA, Lam TT (2003) Interleukin-6 in retinal ischemia reperfusion injury in rats. Invest Ophthalmol Vis Sci 44:4006–4011. doi: 10.1167/iovs.03-0040 PubMedGoogle Scholar
  208. 208.
    Inomata Y, Hirata A, Yonemura N, Koga T, Kido N, Tanihara H (2003) Neuroprotective effects of interleukin-6 on NMDA-induced rat retinal damage. Biochem Biophys Res Commun 302:226–232. doi: 10.1016/S0006-291X(03)00127-X PubMedGoogle Scholar
  209. 209.
    Chong DY, Boehlke CS, Zheng QD, Zhang L, Han Y, Zacks DN (2008) Interleukin-6 as a photoreceptor neuroprotectant in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 49:3193–3200. doi: 10.1167/iovs.07-1641 PubMedGoogle Scholar
  210. 210.
    Limb GA, Alam A, Earley O, Green W, Chignell AH, Dumonde DC (1994) Distribution of cytokine proteins within epiretinal membranes in proliferative vitreoretinopathy. Curr Eye Res 13:791–798. doi: 10.3109/02713689409025133 PubMedGoogle Scholar
  211. 211.
    Limb GA, Chignell AH, Green W, LeRoy F, Dumonde DC (1996) Distribution of TNF-α and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br J Ophthalmol 80:168–173. doi: 10.1136/bjo.80.2.168 PubMedGoogle Scholar
  212. 212.
    Spranger J, Meyer-Schwickerath R, Klein M, Schatz H, Pfeiffer A (1995) TNF-α level in the vitreous body. Increase in neovascular eye diseases and proliferative diabetic retinopathy. Med Klin 90:134–137Google Scholar
  213. 213.
    Limb GA, Hollifield RD, Webster L, Charteris DG, Chignell AH (2001) Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophthalmol Vis Sci 42:1586–1591PubMedGoogle Scholar
  214. 214.
    Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma JX (2006) Pigment epithelium-derived factor (PEDF) is an endogenous antiinflammatory factor. FASEB J 20:323–325PubMedGoogle Scholar
  215. 215.
    Aksünger A, Or M, Okur H, Hasanreisoğlu B, Akbatur H (1997) Role of interleukin 8 in the pathogenesis of proliferative vitreoretinopathy. Ophthalmologica 211:223–225PubMedGoogle Scholar
  216. 216.
    Elner SG, Strieter R, Bian ZM, Kunkel S, Mokhtarzaden L, Johnson M, Lukacs N, Elner VM (1998) Interferon-induced protein 10 and interleukin 8. C-X-C chemokines present in proliferative diabetic retinopathy. Arch Ophthalmol 116:1597–1601PubMedGoogle Scholar
  217. 217.
    Goczalik I, Raap M, Weick M, Milenkovic I, Heidmann J, Enzmann V, Wiedemann P, Reichenbach A, Francke M (2005) The activation of IL-8 receptors in cultured guinea pig Müller glial cells is modified by signals from retinal pigment epithelium. J Neuroimmunol 161:49–60. doi: 10.1016/j.jneuroim.2004.12.004 Google Scholar
  218. 218.
    Goczalik I, Ulbricht E, Hollborn M, Raap M, Uhlmann S, Weick M, Pannicke T, Wiedemann P, Bringmann A, Reichenbach A, Francke M (2008) Expression of CXCL8, CXCR1, and CXCR2 in neurons and glial cells of the human and rabbit retina. Invest Ophthalmol Vis Sci 49:4578–4589. doi: 10.1167/iovs.08-1887 PubMedGoogle Scholar
  219. 219.
    Esser P, Bresgen M, Fischbach R, Heimann K, Wiedemann P (1995) Intercellular adhesion molecule-1 levels in plasma and vitreous from patients with vitreoretinal disorders. Ger J Ophthalmol 4:269–274PubMedGoogle Scholar
  220. 220.
    Limb GA, Hickman-Casey J, Hollifield RD, Chignell AH (1999) Vascular adhesion molecules in vitreous from eyes with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2453–2457PubMedGoogle Scholar
  221. 221.
    Vogt SD, Barnum SR, Curcio CA, Read RW (2006) Distribution of complement anaphylatoxin receptors and membrane-bound regulators in normal human retina. Exp Eye Res 83:834–840. doi: 10.1016/j.exer.2006.04.002 PubMedGoogle Scholar
  222. 222.
    Birkenmeier G, Grosche J, Reichenbach A (1996) Immunocytochemical demonstration of α2-M-R/LRP on Müller (glial) cells isolated from rabbit and human retina. Neuroreport 8:149–151. doi: 10.1097/00001756-199612200-00030 PubMedGoogle Scholar
  223. 223.
    Hollborn M, Birkenmeier G, Saalbach A, Iandiev I, Reichenbach A, Wiedemann P, Kohen L (2004) Expression of LRP1 in retinal pigment epithelial cells and its regulation by growth factors. Invest Ophthalmol Vis Sci 45:2033–2038. doi: 10.1167/iovs.03-0656 PubMedGoogle Scholar
  224. 224.
    Luna JD, Caribaux LJ, Reviglio VE, Ceschín D, Landa CA, Juarez CP, Chiabrando GA, Sanchez MC (2003) Differential protein expression of LRP and receptor-associated ligands in neovascular rat retinas and patients with neovascular eye disease. Invest Ophthalmol Vis Sci 44, ARVO E-Abstract 3576Google Scholar
  225. 225.
    Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 46:349–357. doi: 10.1167/iovs.04-0860 PubMedGoogle Scholar
  226. 226.
    Milenkovic I, Birkenmeier G, Wiedemann P, Reichenbach A, Bringmann A (2005) Effect of α2-macroglobulin on retinal glial cell proliferation. Graefes Arch Clin Exp Ophthalmol 243:811–816. doi: 10.1007/s00417-004-1113-6 PubMedGoogle Scholar
  227. 227.
    Cantó Soler MV, Gallo JE, Dodds RA, Hökfelt T, Villar MJ, Suburo AM (2002) Y1 receptor of neuropeptide Y as a glial marker in proliferative vitreoretinopathy and diseased human retina. Glia 39:320–324. doi: 10.1002/glia.10107 PubMedGoogle Scholar
  228. 228.
    Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2004) Neuropeptide Y-evoked proliferation of retinal glial (Müller) cells. Graefes Arch Clin Exp Ophthalmol 242:944–950. doi: 10.1007/s00417-004-0954-3 PubMedGoogle Scholar
  229. 229.
    Harada T, Harada C, Mitamura Y, Akazawa C, Ohtsuka K, Ohno S, Takeuchi S, Wada K (2002) Neurotrophic factor receptors in epiretinal membranes after human diabetic retinopathy. Diabetes Care 25:1060–1065. doi: 10.2337/diacare.25.6.1060 PubMedGoogle Scholar
  230. 230.
    Newman EA (2001) Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 21:2215–2223PubMedGoogle Scholar
  231. 231.
    Newman EA (2003) Glial cell inhibition of neurons by release of ATP. J Neurosci 23:1659–1666PubMedGoogle Scholar
  232. 232.
    Francke M, Weick M, Pannicke T, Uckermann O, Grosche J, Goczalik I, Milenkovic I, Uhlmann S, Faude F, Wiedemann P, Reichenbach A, Bringmann A (2002) Up-regulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 43:870–881PubMedGoogle Scholar
  233. 233.
    Wu LJ, Vadakkan KI, Zhuo M (2007) ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents. Glia 55:810–821. doi: 10.1002/glia.20500 PubMedGoogle Scholar
  234. 234.
    Pannicke T, Fischer W, Biedermann B, Schädlich H, Grosche J, Faude F, Wiedemann P, Allgaier C, Illes P, Burnstock G, Reichenbach A (2000) P2X7 receptors in Müller glial cells from the human retina. J Neurosci 20:5965–5972PubMedGoogle Scholar
  235. 235.
    Bringmann A, Pannicke T, Moll V, Milenkovic I, Faude F, Enzmann V, Wolf S, Reichenbach A (2001) Upregulation of P2X7 receptor currents in Müller glial cells during proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 42:860–867PubMedGoogle Scholar
  236. 236.
    Bringmann A, Pannicke T, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A (2002) Membrane conductance of Müller glial cells in proliferative diabetic retinopathy. Can J Ophthalmol 37:221–227PubMedGoogle Scholar
  237. 237.
    Guidry C (1997) Tractional force generation by porcine Müller cells: development and differential stimulation by growth factors. Invest Ophthalmol Vis Sci 38:456–468PubMedGoogle Scholar
  238. 238.
    Hardwick C, Feist R, Morris R, White M, Witherspoon D, Angus R, Guidry C (1997) Tractional force generation by porcine Müller cells: stimulation by growth factors in human vitreous. Invest Ophthalmol Vis Sci 38:2053–2063PubMedGoogle Scholar
  239. 239.
    Guidry C, Feist R, Morris R, Hardwick CW (2004) Changes in IGF activities in human diabetic vitreous. Diabetes 53:2428–2435. doi: 10.2337/diabetes.53.9.2428 PubMedGoogle Scholar
  240. 240.
    Mamballikalathil I, Mann C, Guidry C (2000) Tractional force generation by porcine Müller cells: paracrine stimulation by retinal pigment epithelium. Invest Ophthalmol Vis Sci 41:529–536PubMedGoogle Scholar
  241. 241.
    Ikuno Y, Kazlauskas A (2002) TGFß1-dependent contraction of fibroblasts is mediated by the PDGFα receptor. Invest Ophthalmol Vis Sci 43:41–46PubMedGoogle Scholar
  242. 242.
    Guidry C, Bradley KM, King JL (2003) Tractional force generation by human Müller cells growth factor responsiveness and integrin receptor involvement. Invest Ophthalmol Vis Sci 44:1355–1363. doi: 10.1167/iovs.02-0046 PubMedGoogle Scholar
  243. 243.
    Méhes E, Czirók A, Hegedüs B, Szabó B, Vicsek T, Satz J, Campbell K, Jancsik V (2005) Dystroglycan is involved in laminin-1-stimulated motility of Müller glial cells: combined velocity and directionality analysis. Glia 49:492–500. doi: 10.1002/glia.20135 PubMedGoogle Scholar
  244. 244.
    Francke M, Pannicke T, Biedermann B, Faude F, Wiedemann P, Reichenbach A, Reichelt W (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20:210–218. doi:10.1002/(SICI)1098-1136(199707)20:3<210::AID-GLIA5>3.0.CO;2-BPubMedGoogle Scholar
  245. 245.
    Reichelt W, Pannicke T, Biedermann B, Francke M, Faude F (1997) Comparison between functional characteristics of healthy and pathological human retinal Müller glial cells. Surv Ophthalmol 42:S105–S117PubMedGoogle Scholar
  246. 246.
    Bringmann A, Francke M, Pannicke T, Biedermann B, Faude F, Enzmann V, Wiedemann P, Reichelt W, Reichenbach A (1999) Human Müller glial cells: altered potassium channel activity in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 40:3316–3323PubMedGoogle Scholar
  247. 247.
    Francke M, Faude F, Pannicke T, Bringmann A, Eckstein P, Reichelt W, Wiedemann P, Reichenbach A (2001) Electrophysiology of rabbit Müller (glial) cells in experimental retinal detachment and PVR. Invest Ophthalmol Vis Sci 42:1072–1079PubMedGoogle Scholar
  248. 248.
    Tenckhoff S, Hollborn M, Kohen L, Wolf S, Wiedemann P, Bringmann A (2005) Diversity of aquaporin mRNA expressed by rat and human retinas. Neuroreport 16:53–56. doi: 10.1097/00001756-200501190-00013 PubMedGoogle Scholar
  249. 249.
    Bringmann A, Biedermann B, Reichenbach A (1999) Expression of potassium channels during postnatal differentiation of rabbit Müller glial cells. Eur J Neurosci 11:2883–2896. doi: 10.1046/j.1460-9568.1999.00706.x PubMedGoogle Scholar
  250. 250.
    Francke M, Pannicke T, Biedermann B, Faude F, Reichelt W (1996) Sodium current amplitude increases dramatically in human retinal glial cells during diseases of the eye. Eur J Neurosci 8:2662–2670. doi: 10.1111/j.1460-9568.1996.tb01561.x PubMedGoogle Scholar
  251. 251.
    Bringmann A, Biedermann B, Schnurbusch U, Enzmann V, Faude F, Reichenbach A (2000) Age- and disease-related changes of calcium channel-mediated currents in human Müller glial cells. Invest Ophthalmol Vis Sci 41:2791–2796PubMedGoogle Scholar
  252. 252.
    Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36:241–249. doi: 10.1159/000081203 PubMedGoogle Scholar
  253. 253.
    Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54:143–160Google Scholar
  254. 254.
    Silver J (1994) Inhibitory molecules in development and regeneration. J Neurol 242:S22–S24. doi: 10.1007/BF00939236 PubMedGoogle Scholar
  255. 255.
    Canning DR, Höke A, Malemud CJ, Silver J (1996) A potent inhibitor of neurite outgrowth that predominates in the extracellular matrix of reactive astrocytes. Int J Dev Neurosci 14:153–175. doi: 10.1016/0736-5748(96)00004-4 PubMedGoogle Scholar
  256. 256.
    Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391. doi: 10.1016/S0361-9230(99)00072-6 PubMedGoogle Scholar
  257. 257.
    Inatani M, Tanihara H, Oohira A, Honjo M, Kido N, Honda Y (2000) Upregulated expression of neurocan, a nervous tissue specific proteoglycan, in transient retinal ischemia. Invest Ophthalmol Vis Sci 41:2748–2754PubMedGoogle Scholar
  258. 258.
    Sellés-Navarro I, Ellezam B, Fajardo R, Latour M, McKerracher L (2001) Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp Neurol 167:282–289. doi: 10.1006/exnr.2000.7573 PubMedGoogle Scholar
  259. 259.
    Inatani M, Tanihara H (2002) Proteoglycans in retina. Prog Retin Eye Res 21:429–447. doi: 10.1016/S1350-9462(02)00009-5 PubMedGoogle Scholar
  260. 260.
    Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127. doi: 10.1016/j.conb.2006.09.004 PubMedGoogle Scholar
  261. 261.
    Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. doi: 10.1038/nrm1004 PubMedGoogle Scholar
  262. 262.
    Chaitin MH, Wortham HS, Brun-Zinkernagel AM (1994) Immunocytochemical localization of CD44 in the mouse retina. Exp Eye Res 58:359–366. doi: 10.1006/exer.1994.1026 PubMedGoogle Scholar
  263. 263.
    Chaitin MH, Ankrum MT, Wortham HS (1996) Distribution of CD44 in the retina during development and the rds degeneration. Dev Brain Res 94:92–98. doi: 10.1016/0165-3806(96)00046-6 Google Scholar
  264. 264.
    Kuhrt H, Härtig W, Grimm D, Faude F, Kasper M, Reichenbach A (1997) Changes in CD44 and ApoE immunoreactivities due to retinal pathology of man and rat. J Hirnforsch 38:223–229PubMedGoogle Scholar
  265. 265.
    Chaitin MH, Brun-Zinkernagel AM (1998) Immunolocalization of CD44 in the dystrophic rat retina. Exp Eye Res 67:283–292. doi: 10.1006/exer.1998.0510 PubMedGoogle Scholar
  266. 266.
    Krishnamoorthy R, Agarwal N, Chaitin MH (2000) Upregulation of CD44 expression in the retina during the rds degeneration. Brain Res Mol Brain Res 77:125–130. doi: 10.1016/S0169-328X(00)00035-8 PubMedGoogle Scholar
  267. 267.
    Zhang Y, Rauch U, Perez MT (2003) Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats. Invest Ophthalmol Vis Sci 44:1252–1261. doi: 10.1167/iovs.02-0450 PubMedGoogle Scholar
  268. 268.
    Rivera JC, Aranda J, Riesgo J, Nava G, Thebault S, López-Barrera F, Ramírez M, Martínez de la Escalera G, Clapp C (2008) Expression and cellular localization of prolactin and the prolactin receptor in mammalian retina. Exp Eye Res 86:314–321. doi: 10.1016/j.exer.2007.11.003 PubMedGoogle Scholar
  269. 269.
    Fisher SK, Lewis GP, Linberg KA, Verardo MR (2005) Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res 24:395–431. doi: 10.1016/j.preteyeres.2004.10.004 PubMedGoogle Scholar
  270. 270.
    Lesnik Oberstein SY, Lewis GP, Chapin EA, Fisher SK (2008) Ganglion cell neurites in human idiopathic epiretinal membranes. Br J Ophthalmol 92:981–985. doi: 10.1136/bjo.2007.132332 PubMedGoogle Scholar
  271. 271.
    Hartnett ME, Weiter JJ, Staurenghi G, Elsner AE (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053PubMedGoogle Scholar
  272. 272.
    Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434. doi: 10.1097/00006982-200110000-00003 PubMedGoogle Scholar
  273. 273.
    Gass JD, Donald M, Agarwal A, Lavina AM, Tawansy KA (2003) Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 23:741–751. doi: 10.1097/00006982-200312000-00001 PubMedGoogle Scholar
  274. 274.
    De Souza OF, Sakamoto T, Kimura H, Koda RP, Gabrielian K, Spee C, Ryan SJ (1995) Inhibition of experimental proliferative vitreoretinopathy in rabbits by suramin. Ophthalmologica 209:212–216PubMedCrossRefGoogle Scholar
  275. 275.
    Wiedemann P, Hilgers RD, Bauer P, Heimann K (1998) Adjunctive daunorubicin in the treatment of proliferative vitreoretinopathy: results of a multicenter clinical trial. Daunomycin Study Group. Am J Ophthalmol 126:550–559. doi: 10.1016/S0002-9394(98)00115-9 PubMedGoogle Scholar
  276. 276.
    Funata M, Wendel RT, de la Cruz Z, Green WR (1992) Clinicopathologic study of bilateral macular holes treated with pars planar vitrectomy and gas tamponade. Retina 12:289–298. doi: 10.1097/00006982-199212040-00001 PubMedGoogle Scholar
  277. 277.
    Madreperla SA, Geiger GL, Funata M, de la Cruz Z, Green WR (1994) Clinicopathologic correlation of a macular hole treated by cortical vitreous peeling and gas tamponade. Ophthalmology 101:682–686PubMedGoogle Scholar
  278. 278.
    Christmas NJ, Skolik SA, Howard MA, Saito Y, Barnstable CJ, Liggett PE (1995) Treatment of retinal breaks with autologous serum in an experimental model. Ophthalmology 102:263–271PubMedGoogle Scholar
  279. 279.
    Stefánsson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79:435–440. doi: 10.1034/j.1600-0420.2001.790502.x PubMedGoogle Scholar
  280. 280.
    Quiram PA, Leverenz VR, Baker RM, Dang L, Giblin FJ, Trese MT (2007) Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels. Retina 27:1090–1096PubMedGoogle Scholar
  281. 281.
    Mayer EJ, Hughes EH, Carter DA, Dick AD (2003) Nestin positive cells in adult human retina and in epiretinal membranes. Br J Ophthalmol 87:1154–1158. doi: 10.1136/bjo.87.9.1154 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Ophthalmology and Eye Hospital, Faculty of MedicineUniversity of LeipzigLeipzigGermany

Personalised recommendations