Effect of intravitreal plasmin on vitreous removal through a 25-gauge cutting system in the rabbit in vivo

  • Martin Hermel
  • Jonathan Prenner
  • Motaz Alabdulrazzak
  • Wendy Dailey
  • Michael Hartzer
Retinal Disorders



Intravitreal plasmin creates a posterior vitreous detachment, but may also liquefy the vitreous. This study measures the rate of vitreous removal from rabbit eyes after plasmin injection in vivo.


Intravitreal injections of 150 IU hyaluronidase (n = 5), 0.5 activity units (AU, n = 6) or 0.9 AU of streptokinase-activated human plasmin (n = four groups of 6) in 0.1 ml were performed in rabbits, the fellow eyes received 0.1 ml BSS. After 30 min (hyaluronidase), 30 min, 4 h, 12 h or 24 h (0.9 AU plasmin) or 24 h (0.5 AU plasmin), 1 ml of vitreous was removed from each eye without infusion, using a 25-gauge cutter and a standardized protocol. Animals were sacrificed after surgery.


Compared to fellow eyes, the average rate of vitreous removal was increased by hyaluronidase by 68.9 ± 6.3% (p < 0.05) and by 0.5 AU plasmin (24 h) by 26.8 ± 3.3% (p < 0.05). 0.9 AU of plasmin increased removal rates by 0.8 ± 10% (n.s.), 15.4 ± 6.3% (p < 0.05), 40.3 ± 3.1% (p < 0.05), and 71.9 ± 32.4% (p < 0.05) after 30 min, 4 h, 12 h and 24 h incubation respectively. The ratios of removal rates of treated/control eyes in the 0.9 AU groups showed a linear correlation with incubation time (r = 0.783, p < 0.0001).


Intravitreal plasmin increases the rate of vitreous removal in rabbits.


Enzyme administration and dosage Plasmin Plasmin drug effects Plasmin therapeutic use Vitrectomy Vitrectomy methods Vitreous body drug effects Vitreous body surgery 


  1. 1.
    Capeans C, Lorenzo J, Santos L, Suarez A, Copena MJ, Blanco MJ, Sanchez-Salorio M (1998) Comparative study of incomplete posterior vitreous detachment as a risk factor for proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 236:481–485. doi:10.1007/s004170050109 PubMedCrossRefGoogle Scholar
  2. 2.
    Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S (1981) Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 41:4629–4636PubMedGoogle Scholar
  3. 3.
    Verstraeten TC, Chapman C, Hartzer M, Winkler BS, Trese MT, Williams GA (1993) Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol 111:849–854PubMedGoogle Scholar
  4. 4.
    Margherio AR, Margherio RR, Hartzer M, Trese MT, Williams GA, Ferrone PJ (1998) Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes. Ophthalmology 105:1617–1620. doi:10.1016/S0161-6420(98)99027-3 PubMedCrossRefGoogle Scholar
  5. 5.
    Hermel M, Schrage N (2006) Efficacy of plasmin enzymes and chondroitinase ABC in creating posterior vitreous separation in the pig: a masked, placebo-controlled in vivo study. Graefes Arch Clin Exp Ophthalmol 244:1–8CrossRefGoogle Scholar
  6. 6.
    Trese MT (2000) Enzymatic vitreous surgery. Semin Ophthalmol 15:116–121PubMedCrossRefGoogle Scholar
  7. 7.
    Asami T, Terasaki H, Kachi S, Nakamura M, Yamamura K, Nabeshima T, Miyake Y (2004) Ultrastructure of internal limiting membrane removed during plasmin-assisted vitrectomy from eyes with diabetic macular edema. Ophthalmology 111:231–237. doi:10.1016/j.ophtha.2003.06.001 PubMedCrossRefGoogle Scholar
  8. 8.
    Hirata A, Takano A, Inomata Y, Yonemura N, Sagara N, Tanihara H (2007) Plasmin-assisted vitrectomy for management of proliferative membrane in proliferative diabetic retinopathy: a pilot study. Retina 27:1074–1078PubMedGoogle Scholar
  9. 9.
    Staubach F, Nober V, Janknecht P (2004) Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin. Curr Eye Res 29:261–268. doi:10.1080/02713680490516747 PubMedCrossRefGoogle Scholar
  10. 10.
    Sebag J, Ansari RR, Suh KI (2007) Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol 245:576–580. doi:10.1007/s00417-006-0394-3 PubMedCrossRefGoogle Scholar
  11. 11.
    Hartzer MK, Dailey WA, Trese MT, Williams GA, Hermel M, Trese D (2003) Rapid purification of autologous plasmin for use in vitreoretinal surgery. Invest Ophthalmol Vis Sci 44:ARVO E-Abstract 3046.Google Scholar
  12. 12.
    Collen D, Lijnen HR, De Cock F, Durieux JP, Loffet A (1980) Kinetic properties of tripeptide lysyl chloromethyl ketone and lysyl p- nitroanilide derivatives towards trypsin-like serine proteinases. Biochim Biophys Acta 615:158–166PubMedGoogle Scholar
  13. 13.
    Hermel M, Mahgoub M, Youssef T, Azrak MI, Raza H, Alldredge C, Trese M, Williams GA, Hartzer M (2006) Safety profile of the intravitreal streptokinase-plasmin complex as an adjunct to vitrectomy in the rabbit. Graefes Arch Clin Exp Ophthalmol 244:996–1002. doi:10.1007/s00417-005-0159-4 PubMedCrossRefGoogle Scholar
  14. 14.
    Kawano SI, Honda Y, Negi A (1982) Effects of biological stimuli on the viscosity of the vitreous. Acta Ophthalmol (Copenh) 60:977–991CrossRefGoogle Scholar
  15. 15.
    Aguayo J, Glaser B, Mildvan A, Cheng HM, Gonzalez RG, Brady T (1985) Study of vitreous liquifaction by NMR spectroscopy and imaging. Invest Ophthalmol Vis Sci 26:692–697PubMedGoogle Scholar
  16. 16.
    Munoz JI, Suarez-Penaranda JM, Otero XL, Rodriguez-Calvo MS, Costas E, Miguens X, Concheiro L (2001) A new perspective in the estimation of postmortem interval (PMI) based on vitreous. J Forensic Sci 46:209–214PubMedGoogle Scholar
  17. 17.
    McLaughlin PS, McLaughlin BG (1987) Chemical analysis of bovine and porcine vitreous humors: correlation of normal values with serum chemical values and changes with time and temperature. Am J Vet Res 48:467–473PubMedGoogle Scholar
  18. 18.
    Peyman GA, Men G (2005) Correspondence: Reply. Retina 25:233–234. doi:10.1097/00006982-200502000-00027 CrossRefGoogle Scholar
  19. 19.
    Bishop PN, McLeod D, Reardon A (1999) Effects of hyaluronan lyase, hyaluronidase, and chondroitin ABC lyase on mammalian vitreous gel. Invest Ophthalmol Vis Sci 40:2173–2178PubMedGoogle Scholar
  20. 20.
    Miyashita C, Wenzel E, Heiden M (1988) Plasminogen: a brief introduction into its biochemistry and function. Haemostasis 18(Suppl 1):7–13PubMedGoogle Scholar
  21. 21.
    Plantner JJ, Smine A, Quinn TA (1998) Matrix metalloproteinases and metalloproteinase inhibitors in human interphotoreceptor matrix and vitreous. Curr Eye Res 17:132–140. doi:10.1076/ceyr. PubMedCrossRefGoogle Scholar
  22. 22.
    Takano A, Hirata A, Inomata Y, Kawaji T, Nakagawa K, Nagata S, Tanihara H (2005) Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol 140:654–660. doi:10.1016/j.ajo.2005.04.017 PubMedCrossRefGoogle Scholar
  23. 23.
    Brown DJ, Bishop P, Hamdi H, Kenney MC (1996) Cleavage of structural components of mammalian vitreous by endogenous matrix metalloproteinase-2. Curr Eye Res 15:439–445. doi:10.3109/02713689608995835 PubMedCrossRefGoogle Scholar
  24. 24.
    Corcoran ML, Hewitt RE, Kleiner DE Jr, Stetler-Stevenson WG (1996) MMP-2: expression, activation and inhibition. Enzyme Protein 49:7–19PubMedGoogle Scholar
  25. 25.
    DeClerck YA, Laug WE (1996) Cooperation between matrix metalloproteinases and the plasminogen activator-plasmin system in tumor progression. Enzyme Protein 49:72–84PubMedGoogle Scholar
  26. 26.
    Vaughan-Thomas A, Gilbert SJ, Duance VC (2000) Elevated levels of proteolytic enzymes in the aging human vitreous. Invest Ophthalmol Vis Sci 41:3299–3304PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Martin Hermel
    • 1
  • Jonathan Prenner
    • 3
  • Motaz Alabdulrazzak
    • 3
  • Wendy Dailey
    • 2
  • Michael Hartzer
    • 2
  1. 1.Department of OphthalmologyRWTH Aachen UniversityAachenGermany
  2. 2.NuVue TechnologiesKeeneUSA
  3. 3.Associated Retinal ConsultantsRoyal OakUSA

Personalised recommendations