Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells

  • Gabriele Thumann
  • Anna Katharina Salz
  • Peter Walter
  • Sandra Johnen
Basic Science



To examine whether iris pigment epithelial (IPE) cells transplanted into the subretinal space of Royal College of Surgeons (RCS) rats have the ability to rescue photoreceptors.


Rat IPE (rIPE) or human IPE (hIPE) cells were transplanted subretinally in 23-day-old RCS rats. Sham injection and transplantation of ARPE-19 cells served as controls. After 12 weeks, eyes were evaluated for photoreceptor survival by morphometric analysis and electron microscopy.


Morphometric analysis showed photoreceptor rescue in all transplanted and sham-injected animals (number of photoreceptors/300 µm retina±sd: rIPE 41.67 ± 28; hIPE 29.50 ± 16; ARPE-19 36.12 ± 21; sham 16.56 ± 6) compared to age-matched, control rats (number of photoreceptors/300 µm retina±sd: 9.71 ± 4). Photoreceptor rescue was prominent in IPE cell-transplanted rats and was significantly greater than sham-injected eyes (p = 0.02 for rIPE and p = 0.04 for hIPE).


Since IPE cells transplanted into the subretinal space have the ability to rescue photoreceptors from degeneration in the RCS rat without any harmful effects, IPE cells may represent an ideal cell to genetically modify and thus carry essential genetic information for the repair of defects in the subretinal space.


RPE IPE RCS Transplantation Retinal degeneration 



This work was supported by a grant from the Interdisciplinary Centre for Clinical Research “BIOMAT” within the Faculty of Medicine at the RWTH University of Aachen.


  1. 1.
    Eckardt C, Eckardt U, Conrad HG (1999) Macular rotation with and without counter-rotation of the globe in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:313–325, doi: 10.1007/s004170050239 PubMedCrossRefGoogle Scholar
  2. 2.
    Steinhorst UH, Kuster S (1997) Surgical treatment of senile macular degeneration: rotation or transplantation? Klin Monatsbl Augenheilkd 210:aA1–aA2PubMedGoogle Scholar
  3. 3.
    Terasaki H, Miyake Y, Suzuki T, Niwa T, Piao CH, Suzuki S et al (2002) Change in full-field ERGs after macular translocation surgery with 360 degrees retinotomy. Invest Ophthalmol Vis Sci 43:452–457PubMedGoogle Scholar
  4. 4.
    Aisenbrey S, Lafaut BA, Szurman P, Grisanti S, Luke C, Krott R et al (2002) Macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol 120:451–459PubMedGoogle Scholar
  5. 5.
    Aisenbrey S, Bartz-Schmidt U (2003) Macular translocation with 360-degree retinotomy for management of age-related macular degeneration with subfoveal choroidal neovascularization. Am J Ophthalmol 135:748–749, doi: 10.1016/S0002-9394(03)00145-4 PubMedCrossRefGoogle Scholar
  6. 6.
    Aisenbrey S, Bartz-Schmidt KU, Walter P, Hilgers RD, Ayertey H, Szurman P et al (2007) Long-term follow-up of macular translocation with 360 degrees retinotomy for exudative age-related macular degeneration. Arch Ophthalmol 125:1367–1372, doi: 10.1001/archopht.125.10.1367 PubMedCrossRefGoogle Scholar
  7. 7.
    Abe T, Yoshida M, Kano T, Tamai M (2001) Visual function after removal of subretinal neovascular membranes in patients with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 239:927–936, doi: 10.1007/s00417-001-0393-3 PubMedCrossRefGoogle Scholar
  8. 8.
    Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P et al (2006) Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol 124:183–188, doi: 10.1001/archopht.124.2.183 PubMedCrossRefGoogle Scholar
  9. 9.
    Algvere PV, Gouras P, Dafgard KE (1999) Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur J Ophthalmol 9:217–230PubMedGoogle Scholar
  10. 10.
    Binder S, Krebs I, Hilgers RD, Abri A, Stolba U, Assadoulina A et al (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45:4151–4160, doi: 10.1167/iovs.04-0118 PubMedCrossRefGoogle Scholar
  11. 11.
    van Meurs JC, ter Averst E, Hofland LJ, van Hagen PM, Mooy CM, Baarsma GS et al (2004) Autologous peripheral retinal pigment epithelium translocation in patients with subfoveal neovascular membranes. Br J Ophthalmol 88:110–113, doi: 10.1136/bjo.88.1.110 PubMedCrossRefGoogle Scholar
  12. 12.
    Lawrence JM, Sauve Y, Keegan DJ, Coffey PJ, Hetherington L, Girman S et al (2000) Schwann cell grafting into the retina of the dystrophic RCS rat limits functional deterioration. Invest Ophthalmol Vis Sci 41:518–528PubMedGoogle Scholar
  13. 13.
    Lawrence JM, Keegan DJ, Muir EM, Coffey PJ, Rogers JH, Wilby MJ et al (2004) Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 45:267–274, doi: 10.1167/iovs.03-0093 PubMedCrossRefGoogle Scholar
  14. 14.
    McGill TJ, Lund RD, Douglas RM, Wang S, Lu B, Silver BD et al (2007) Syngeneic Schwann cell transplantation preserves vision in RCS rat without immunosuppression. Invest Ophthalmol Vis Sci 48:1906–1912, doi: 10.1167/iovs.06-1117 PubMedCrossRefGoogle Scholar
  15. 15.
    Wang S, Lu B, Wood P, Lund RD (2005) Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci 46:2552–2560, doi: 10.1167/iovs.05-0279 PubMedCrossRefGoogle Scholar
  16. 16.
    Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y et al (2007) Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 85:234–241, doi: 10.1016/j.exer.2007.04.007 PubMedCrossRefGoogle Scholar
  17. 17.
    Wang S, Girman S, Lu B, Bischoff N, Holmes T, Shearer R et al (2008) Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol Vis Sci 49:3201–3206, doi: 10.1167/iovs.08-1831 PubMedCrossRefGoogle Scholar
  18. 18.
    Wang S, Lu B, Girman S, Holmes T, Bischoff N, Lund RD (2008) Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest Ophthalmol Vis Sci 49:416–421, doi: 10.1167/iovs.07-0992 PubMedCrossRefGoogle Scholar
  19. 19.
    Pinilla I, Cuenca N, Sauve Y, Wang S, Lund RD (2007) Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 85:381–392, doi: 10.1016/j.exer.2007.06.002 PubMedCrossRefGoogle Scholar
  20. 20.
    Gias C, Jones M, Keegan D, Adamson P, Greenwood J, Lund R et al (2007) Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques. Eur J Neurosci 25:1940–1948, doi: 10.1111/j.1460-9568.2007.05459.x PubMedCrossRefGoogle Scholar
  21. 21.
    Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B et al (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199, doi: 10.1089/clo.2006.8.189 PubMedCrossRefGoogle Scholar
  22. 22.
    Abe T, Yoshida M, Tomita H, Kano T, Sato M, Wada Y et al (2000) Auto iris pigment epithelial cell transplantation in patients with age- related macular degeneration: short-term results. Tohoku J Exp Med 191:7–20, doi: 10.1620/tjem.191.7 PubMedCrossRefGoogle Scholar
  23. 23.
    Lappas A, Weinberger AW, Foerster AM, Kube T, Rezai KA, Kirchhof B (2000) Iris pigment epithelial cell translocation in exudative age-related macular degeneration. A pilot study in patients. Graefes Arch Clin Exp Ophthalmol 238:631–641, doi: 10.1007/s004170000149 PubMedCrossRefGoogle Scholar
  24. 24.
    Lappas A, Foerster AM, Weinberger AW, Coburger S, Schrage NF, Kirchhof B (2004) Translocation of iris pigment epithelium in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol 242:638–647, doi: 10.1007/s00417-003-0764-z PubMedCrossRefGoogle Scholar
  25. 25.
    Thumann G, Aisenbrey S, Schraermeyer U, Lafaut B, Esser P, Walter P et al (2000) Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Arch Ophthalmol 118:1350–1355PubMedGoogle Scholar
  26. 26.
    Schraermeyer U, Kociok N, Heimann K (1999) Rescue effects of IPE transplants in RCS rats: short-term results. Invest Ophthalmol Vis Sci 40:1545–1556PubMedGoogle Scholar
  27. 27.
    Michon JJ, Li ZL, Shioura N, Anderson RJ, Tso MO (1991) A comparative study of methods of photoreceptor morphometry. Invest Ophthalmol Vis Sci 32:280–284PubMedGoogle Scholar
  28. 28.
    Lenzi L, Coassin M, Lambiase A, Bonini S, Amendola T, Aloe L (2005) Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa. Vision Res 45:1491–1500, doi: 10.1016/j.visres.2004.12.020 PubMedCrossRefGoogle Scholar
  29. 29.
    Perry J, Du J, Kjeldbye H, Gouras P (1995) The effects of bFGF on RCS rat eyes. Curr Eye Res 14:585–592, doi: 10.3109/02713689508998406 PubMedCrossRefGoogle Scholar
  30. 30.
    Sakai T, Kuno N, Takamatsu F, Kimura E, Kohno H, Okano K et al (2007) Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 48:3381–3387, doi: 10.1167/iovs.06-1242 PubMedCrossRefGoogle Scholar
  31. 31.
    Caffe AR, Soderpalm AK, Holmqvist I, van Veen T (2001) A combination of CNTF and BDNF rescues rd photoreceptors but changes rod differentiation in the presence of RPE in retinal explants. Invest Ophthalmol Vis Sci 42:275–282PubMedGoogle Scholar
  32. 32.
    Whiteley SJ, Klassen H, Coffey PJ, Young MJ (2001) Photoreceptor rescue after low-dose intravitreal IL-1beta injection in the RCS rat. Exp Eye Res 73:557–568, doi: 10.1006/exer.2001.1066 PubMedCrossRefGoogle Scholar
  33. 33.
    Carwile ME, Culbert RB, Sturdivant RL, Kraft TW (1998) Rod outer segment maintenance is enhanced in the presence of bFGF, CNTF and GDNF. Exp Eye Res 66:791–805, doi: 10.1006/exer.1998.0488 PubMedCrossRefGoogle Scholar
  34. 34.
    McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG (2001) Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 4:622–629, doi: 10.1006/mthe.2001.0498 PubMedCrossRefGoogle Scholar
  35. 35.
    Kent TL, Glybina IV, Abrams GW, Iezzi R (2008) Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat. Invest Ophthalmol Vis Sci 49:372–379, doi: 10.1167/iovs.07-0952 PubMedCrossRefGoogle Scholar
  36. 36.
    Li LX, Turner JE (1988) Inherited retinal dystrophy in the RCS rat: prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp Eye Res 47:911–917, doi: 10.1016/0014-4835(88)90073-5 PubMedCrossRefGoogle Scholar
  37. 37.
    Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M et al (1989) Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci 30:586–588PubMedGoogle Scholar
  38. 38.
    Sheedlo HJ, Gaur V, Li LX, Seaton AD, Turner JE (1991) Transplantation to the diseased and damaged retina. Trends Neurosci 14:347–350, doi: 10.1016/0166-2236(91)90160-V PubMedCrossRefGoogle Scholar
  39. 39.
    Sheedlo HJ, Li L, Gaur VP, Young RW, Seaton AD, Stovall SV et al (1992) Photoreceptor rescue in the dystrophic retina by transplantation of retinal pigment epithelium. Int Rev Cytol 138:1–49, doi: 10.1016/S0074-7696(08)61586-7 PubMedCrossRefGoogle Scholar
  40. 40.
    Klassen H, Whiteley SJ, Young MJ, Lund RD (2001) Graft location affects functional rescue following RPE cell transplantation in the RCS rat. Exp Neurol 169:114–121, doi: 10.1006/exnr.2000.7617 PubMedCrossRefGoogle Scholar
  41. 41.
    Sauve Y, Klassen H, Whiteley SJ, Lund RD (1998) Visual field loss in RCS rats and the effect of RPE cell transplantation. Exp Neurol 152:243–250, doi: 10.1006/exnr.1998.6849 PubMedCrossRefGoogle Scholar
  42. 42.
    Kociok N, Heppekausen H, Schraermeyer U, Esser P, Thumann G, Grisanti S et al (1998) The mRNA expression of cytokines and their receptors in cultured iris pigment epithelial cells: a comparison with retinal pigment epithelial cells. Exp Eye Res 67:237–250, doi: 10.1006/exer.1998.0517 PubMedCrossRefGoogle Scholar
  43. 43.
    Thumann G, Kociok N, Bartz-Schmidt KU, Esser P, Schraermeyer U, Heimann K (1999) Detection of mRNA for proteins involved in retinol metabolism in iris pigment epithelium. Graefes Arch Clin Exp Ophthalmol 237:1046–1051, doi: 10.1007/s004170050343 PubMedCrossRefGoogle Scholar
  44. 44.
    Schraermeyer U, Enzmann V, Kohen L, Addicks K, Wiedemann P, Heimann K (1997) Porcine iris pigment epithelial cells can take up retinal outer segments. Exp Eye Res 65:277–287, doi: 10.1006/exer.1997.0339 PubMedCrossRefGoogle Scholar
  45. 45.
    Rezai KA, Lappas A, Farrokh-Siar L, Kohen L, Wiedemann P, Heimann K (1997) Iris pigment epithelial cells of Long–Evans rats demonstrate phagocytic activity. Exp Eye Res 65:23–29, doi: 10.1006/exer.1997.0307 PubMedCrossRefGoogle Scholar
  46. 46.
    Thumann G, Bartz-Schmidt KU, Heimann K, Schraermeyer U (1998) Phagocytosis of rod outer segments by human iris pigment epithelial cells in vitro. Graefes Arch Clin Exp Ophthalmol 236:753–757, doi: 10.1007/s004170050154 PubMedCrossRefGoogle Scholar
  47. 47.
    Crafoord S, Geng L, Seregard S, Algvere PV (2002) Photoreceptor survival in transplantation of autologous iris pigment epithelial cells to the subretinal space. Acta Ophthalmol Scand 80:387–394, doi: 10.1034/j.1600-0420.2002.800408.x PubMedCrossRefGoogle Scholar
  48. 48.
    Thumann G, Bartz-Schmidt KU, El Bakri H, Schraermeyer U, Spee C, Cui JZ et al (1999) Transplantation of autologous iris pigment epithelium to the subretinal space in rabbits. Transplantation 68:195–201, doi: 10.1097/00007890-199907270-00006 PubMedCrossRefGoogle Scholar
  49. 49.
    Sauve Y, Pinilla I, Lund RD (2006) Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res 46:1459–1472, doi: 10.1016/j.visres.2005.11.009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gabriele Thumann
    • 1
    • 2
  • Anna Katharina Salz
    • 1
  • Peter Walter
    • 2
  • Sandra Johnen
    • 1
  1. 1.IZKF “Biomat”RWTH University of AachenAachenGermany
  2. 2.Department of OphthalmologyRWTH University of AachenAachenGermany

Personalised recommendations