Evaluation of macular abnormalities in Stargardt’s disease using optical coherence tomography and scanning laser ophthalmoscope microperimetry

  • Fatmire Berisha
  • Gilbert T. FekeEmail author
  • Shakhsanam Aliyeva
  • Koji Hirai
  • Norbert Pfeiffer
  • Tatsuo Hirose
Retinal Disorders



The purpose of this study is to evaluate the diagnostic value of optical coherence tomography (Stratus OCT) and scanning laser ophthalmoscope (SLO) microperimetry in patients with Stargardt’s disease (STGD), and the correlation between macular morphology and visual function in these patients.


Twenty-two patients with STGD (mean age 44 years, range 11 to 71 years) and 20 age-matched healthy control subjects were included in the study. OCT imaging was performed using six radial line scans manually centered on the fovea. SLO microperimetry was used to assess central scotoma and fixation behavior in patients with STGD.


Mean best corrected Snellen visual acuity (BCVA) was 20/80, range 20/25 to 20/300 (log MAR 0.6, range 0.1 to 1.2) in the STGD group and 20/20 (log MAR 0.0) in the control group. Foveal thickness was significantly reduced in patients with STGD (119.0 ± 19.6 μm) compared to controls (210.7 ± 19.6 μm, P < 0.0001). A significant correlation between foveal thickness and BCVA was observed within the STGD group (R2 = 0.62, P < 0.0001). Photoreceptor loss in the macular area and a corresponding central scotoma were observed in all STGD patients.


OCT findings, particularly reduced foveomacular thickness and photoreceptor loss in the macular area may be useful in the diagnosis of STGD. Furthermore, a strong correlation between foveal thickness and visual function was observed in our patients. Assessment of central visual function using SLO microperimetry provides additional useful information, important in the management of STGD.


Stargardt’s disease Optical coherence tomography Scanning laser ophthalmoscope microperimetry 


  1. 1.
    Aaberg TM (1986) Stargardt’s disease and fundus flavimaculatus: evaluation of morphologic progression and intrafamilial coexistence. Trans Am Ophthalmol Soc 84:453–487PubMedGoogle Scholar
  2. 2.
    Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A et al (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246. doi: 10.1038/ng0397-236 PubMedCrossRefGoogle Scholar
  3. 3.
    Armstrong JD, Meyer D, Xu S, Elfervig JL (1998) Long-term follow-up of Stargardt’s disease and fundus flavimaculatus. Ophthalmology 105:448–458. doi: 10.1016/S0161-6420(98)93026-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Berisha F, Hovland PG, Feke GT, Arroyo JG, Bertram K, Hirose T (2006) Preoperative OCT evaluation of photoreceptor defects is a prognostic indicator of visual acuity outcome in macular hole surgery. Program and abstracts of the AAO/APAO Joint Meeting; Las Vegas, Nevada. Poster number 737Google Scholar
  5. 5.
    Carrasco M, Talgar CP, Cameron EL (2001) Characterizing visual performance fields: effects of transient covert attention, spatial frequency, eccentricity, task and set size. Spat Vis 15:61–75. doi: 10.1163/15685680152692015 PubMedCrossRefGoogle Scholar
  6. 6.
    Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25PubMedCrossRefGoogle Scholar
  7. 7.
    Edwards AO, Miedziak A, Vrabec T, Verhoeven J, Acott TS, Weleber RG et al (1999) Autosomal dominant Stargardt-like macular dystrophy: I. Clinical characterization, longitudinal follow-up, and evidence for a common ancestry in families linked to chromosome 6q14. Am J Ophthalmol 127:426–435. doi: 10.1016/S0002-9394(98)00331-6 PubMedCrossRefGoogle Scholar
  8. 8.
    Ergun E, Hermann B, Wirtitsch M, Unterhuber A, Ko TH, Sattmann H et al (2005) Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 46:310–316. doi: 10.1167/iovs.04-0212 PubMedCrossRefGoogle Scholar
  9. 9.
    Fishman GA (1976) Fundus flavimaculatus. A clinical classification. Arch Ophthalmol 94:2061–2067PubMedGoogle Scholar
  10. 10.
    Fishman GA, Stone EM, Grover S, Derlacki DJ, Haines HL, Hockey RR (1999) Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol 117:504–510PubMedGoogle Scholar
  11. 11.
    Franceschetti A (1963) Über tapetoretinale Degenerationen im Kindesalter. In: Sauter H (ed) Entwicklung und Fortschritt in der Augenheilkunde. Enke, Stuttgart, Germany, pp 107–120Google Scholar
  12. 12.
    Franceschetti A, Francois J (1965) Fundus flavimaculatus. Arch Ophtalmol (Paris) 25:505–530Google Scholar
  13. 13.
    Glazer LC, Dryja TP (2002) Understanding the etiology of Stargardt’s disease. Ophthalmol Clin North Am 15:93–100. doi: 10.1016/S0896-1549(01)00011-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Hadden OB, Gass JD (1976) Fundus flavimaculatus and Stargardt’s disease. Am J Ophthalmol 82:527–539PubMedGoogle Scholar
  15. 15.
    Hargitai J, Zernant J, Somfai GM, Vamos R, Farkas A, Salacz G et al (2005) Correlation of clinical and genetic findings in Hungarian patients with Stargardt disease. Invest Ophthalmol Vis Sci 46:4402–4408. doi: 10.1167/iovs.05-0504 PubMedCrossRefGoogle Scholar
  16. 16.
    Hee MR, Izatt JA, Swanson EA et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332PubMedGoogle Scholar
  17. 17.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science 254:1178–1181. doi: 10.1126/science.1957169 PubMedCrossRefGoogle Scholar
  18. 18.
    Itabashi R, Katsumi O, Mehta MC, Wajima, Tamai M, Hirose T (1993) Stargardt’s disease/fundus flavimaculatus: psychophysical and electrophysiologic results. Graefes Arch Clin Exp Ophthalmol 231:555–562. doi: 10.1007/BF00936518 PubMedCrossRefGoogle Scholar
  19. 19.
    Kanski JJ (2007) Clinical Ophthalmology: a systematic approach, 6th edn, Chapter 18. Fundus Dystrophies, pp 670–672Google Scholar
  20. 20.
    Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I et al (2005) Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112:1922–1935. doi: 10.1016/j.ophtha.2005.05.027 PubMedCrossRefGoogle Scholar
  21. 21.
    Maia-Lopes S, Silva ED, Silva MF, Reis A, Faria P, Castelo-Branco M (2008) Evidence of widespread retinal dysfunction in patients with Stargardt disease and morphologically unaffected carrier relatives. Invest Ophthalmol Vis Sci 49:1191–1199. doi: 10.1167/iovs.07-1051 PubMedCrossRefGoogle Scholar
  22. 22.
    Maugeri A, Meire F, Hoyng CB, Vink C, Van Regemorter N, Karan G et al (2004) A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest Ophthalmol Vis Sci 45:4263–4267. doi: 10.1167/iovs.04-0078 PubMedCrossRefGoogle Scholar
  23. 23.
    Menke MN, Sato E, Van De Velde FJ, Feke GT (2006) The combined use of SLO Microperimetry and OCT for retinal functional and structural testing. Graefes Arch Clin Exp Ophthalmol 244:634–638. doi: 10.1007/s00417-005-0088-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Messias A, Reinhard J, Velasco e Cruz AA, Dietz K, MacKeben M, Trauzettel-Klosinski S (2007) Eccentric fixation in Stargardt’s disease assessed by Tübingen perimetry. Invest Ophthalmol Vis Sci 48:5815–5822. doi: 10.1167/iovs.06-0367 PubMedCrossRefGoogle Scholar
  25. 25.
    Mori F, Ishiko S, Kitaya N, Takamiya A, Sato E, Hikichi T et al (2001) Scotoma and fixation patterns using scanning laser ophthalmoscope microperimetry in patients with macular dystrophy. Am J Ophthalmol 132:897–902. doi: 10.1016/S0002-9394(01)01216-8 PubMedCrossRefGoogle Scholar
  26. 26.
    Noble KG, Carr RE (1979) Stargardt’s disease and fundus flavimaculatus. Arch Ophthalmol 97:1281–1285PubMedGoogle Scholar
  27. 27.
    Querques G, Leveziel N, Benhamon N, Voigt M, Soubrane G, Souied EH (2006) Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br J Ophthalmol 90:1157–1162. doi: 10.1136/bjo.2006.094136 PubMedCrossRefGoogle Scholar
  28. 28.
    Reinhard J, Messias A, Dietz K, Mackeben M, Lakmann R, Scholl HP et al (2007) Quantifying fixation in patients with Stargardt disease. Vision Res 47:2076–2085. doi: 10.1016/j.visres.2007.04.012 PubMedCrossRefGoogle Scholar
  29. 29.
    Rohrschneider K, Glück R, Blankenagel A, Völcker HE (1997) Fixation behavior in Stargardt disease. Fundus-controlled studies. Ophthalmologe 94:624–628. doi: 10.1007/s003470050171 PubMedCrossRefGoogle Scholar
  30. 30.
    Silva MF, Maia-Lopes S, Mateus C, Guerreiro M, Sampaio J, Faria P et al (2008) Retinal and cortical patterns of spatial anisotropy in contrast sensitivity tasks. Vision Res 48:127–135. doi: 10.1016/j.visres.2007.10.018 PubMedCrossRefGoogle Scholar
  31. 31.
    Srinivasan VJ, Monson BK, Wojtkowski M, Bilonick RA, Gorczynska I, Chen R et al (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579. doi: 10.1167/iovs.07-0838 PubMedCrossRefGoogle Scholar
  32. 32.
    Stargardt KB (1909) Über familiäre, progressive Degeneration in der Makulagegend des Auges. Graefes Arch Clin Exp Ophthalmol 71:534–550. doi: 10.1007/BF01961301 Google Scholar
  33. 33.
    Stone EM, Nichols BE, Kimura AE, Weingeist TA, Drack A, Sheffield VC (1994) Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q. Arch Ophthalmol 112:765–772PubMedGoogle Scholar
  34. 34.
    Sunness JS, Applegate CA, Haselwood D, Rubin GS (1996) Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. Ophthalmology 103:1458–1466PubMedGoogle Scholar
  35. 35.
    Webb RH, Hughes GW (1981) Scanning laser ophthalmoscope. IEEE Trans Biomed Eng 28:488–492. doi: 10.1109/TBME.1981.324734 PubMedCrossRefGoogle Scholar
  36. 36.
    Webb RH, Hughes GW, Delori FC (1987) Confocal scanning laser ophthalmoscope. Appl Opt 26:1492–1499CrossRefGoogle Scholar
  37. 37.
    Wirtitsch MG, Ergun E, Hermann B, Unterhuber A, Stur M, Scholda C et al (2005) Ultrahigh resolution optical coherence tomography in macular dystrophy. Am J Ophthalmol 140:976–983. doi: 10.1016/j.ajo.2005.06.029 PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang K, Kniazeva M, Hutchinson A, Han M, Dean M, Allikmets R (1999) The ABCR gene in recessive and dominant Stargardt diseases: a genetic pathway in macular degeneration. Genomics 60:234–237PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang K, Kniazeva M, Han M, Li W, Yu Z, Yang Z et al (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27:89–93PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fatmire Berisha
    • 1
    • 2
    • 3
  • Gilbert T. Feke
    • 1
    • 2
    Email author
  • Shakhsanam Aliyeva
    • 1
    • 2
  • Koji Hirai
    • 1
    • 2
  • Norbert Pfeiffer
    • 3
  • Tatsuo Hirose
    • 1
    • 2
  1. 1.Schepens Retina Associates FoundationBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Department of OphthalmologyJohannes Gutenberg-UniversityMainzGermany

Personalised recommendations