Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers

  • Thomas Götze
  • Monika Valtink
  • Mirko Nitschke
  • Stefan Gramm
  • Thomas Hanke
  • Katrin Engelmann
  • Carsten Werner
Basic Science

Abstract

Background

Recently, it was possible to show that human corneal endothelial cells (HCEC) can be cultured on thermo-responsive polymer substrates, and can be harvested as entire cell sheets without losing viability. We sought to study HCEC sheet cultivation on such cell culture carriers under serum-free conditions as the next consequential step in developing methods for generation of corneal endothelial cell transplants.

Methods

An immortalized heterogenous HCEC population and two immortalized, clonally grown HCEC lines (HCEC-B4G12 and HCEC-H9C1) were cultured on thermo-responsive substrates under serum-supplemented and serum-free culture conditions. Cell sheets were characterized by phase contrast microscopy and by immunofluorescent staining for ZO-1, Na+,K+-ATPase, and vinculin.

Results

All tested HCEC populations were able to adhere, spread and proliferate on thermo-responsive substrates under serum-supplemented conditions. Under serum-free conditions, pre-coating of the polymer substrates with ECM proteins was necessary to facilitate attachment and spreading of the cells, except in the case of HCEC-B4G12 cells. The heterogenous HCEC population formed closed monolayers, properly localized ZO-1 to lateral cell borders, and had moderate vinculin levels under serum-free, and higher vinculin levels under serum-supplemented culture conditions. HCEC-B4G12 cells formed closed monolayers, showed proper localization of ZO-1 and Na+,K+-ATPase to lateral cell borders, and had high vinculin levels irrespective of culture conditions. In contrast, HCEC-H9C1 cells had lowest vinculin levels under serum-supplemented, and higher vinculin levels under serum-free culture conditions. ZO-1 was detected throughout the cytoplasm under both culture conditions. These loosely adherent cells were only able to form a closed monolayer under serum-supplemented conditions.

Conclusions

Serum-free production of HCEC sheets is possible. The extremely adherent clonal HCEC line B4G12 produced higher vinculin levels than the other two tested HCEC populations, and showed strong adherence to the thermo-responsive, polymeric culture substratum irrespective of culture conditions. This cell line closely resembles terminally differentiated HCEC in vivo, and was found to be particularly suitable for further studies on HCEC cell sheet engineering.

Keywords

Tissue engineering Human corneal endothelial cells Serum-free cultivation Stimuli responsive polymers Poly(N-isopropylacrylamide) 

Notes

Acknowledgement

The authors thank J. Drichel (IPF Dresden) for excellent assistance with cell culture experiments.

References

  1. 1.
    Aboalchamat B, Engelmann K, Bohnke M, Eggli P, Bednarz J (1999) Morphological and functional analysis of immortalized human corneal endothelial cells after transplantation. Exp Eye Res 69:547–553, doi:10.1006/exer.1999.0736 PubMedCrossRefGoogle Scholar
  2. 2.
    Bednarz J, Doubilei V, Wollnik PCM, Engelmann K (2001) Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells. Br J Ophthalmol 85:1416–1420, doi:10.1136/bjo.85.12.1416 PubMedCrossRefGoogle Scholar
  3. 3.
    Bednarz J, Teifel M, Friedl P, Engelmann K (2000) Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand 78:130–136, doi:10.1034/j.1600-0420.2000.078002130.x PubMedCrossRefGoogle Scholar
  4. 4.
    Gramm S, Komber H, Schmaljohann D (2005) Copolymerization kinetics of N-isopropylacrylamide and diethylene glycol monomethylether monomethacrylate determined by online NMR spectroscopy. J Polym Sci Part Polym Chem 43:142–148, doi:10.1002/pola.20514 CrossRefGoogle Scholar
  5. 5.
    Hadlock T, Singh S, Vacanti JP, Mclaughlin BJ (1999) Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng 5:187–196, doi:10.1089/ten.1999.5.187 PubMedCrossRefGoogle Scholar
  6. 6.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T (2007) Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 28:3632–3643, doi:10.1016/j.biomaterials.2007.04.019 PubMedCrossRefGoogle Scholar
  7. 7.
    Ishino Y, Sano Y, Nakamura T, Connon CJ, Rigby H, Fullwood NJ et al (2004) Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 45:800–806, doi:10.1167/iovs.03-0016 PubMedCrossRefGoogle Scholar
  8. 8.
    Koizumi N, Sakamoto Y, Okumura N, Okahara N, Tsuchiya H, Torii R et al (2007) Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest Ophthalmol Vis Sci 48:4519–4526, doi:10.1167/iovs.07-0567 PubMedCrossRefGoogle Scholar
  9. 9.
    Korinek PM (1994) Amorphous fluoropolymers - a new-generation of products. Macromolecular Symposia 82:61–65, http://www3.interscience.wiley.com/journal/60500249/home CrossRefGoogle Scholar
  10. 10.
    Lai JY, Hsiue GH (2007) Functional biomedical polymers for corneal regenerative medicine. Reactive Funct Polymers 67:1284–1291, doi:10.1016/j.reactfunctpolym.2007.07.060 CrossRefGoogle Scholar
  11. 11.
    Lange TM, Wood TO, Mclaughlin BJ (1993) Corneal endothelial-cell transplantation using Descemets-membrane as a carrier. J Cataract Refract Surg 19:232–235PubMedGoogle Scholar
  12. 12.
    Melles GRJ, Lander F, Rietveld FJR (2002) Transplantation of Descemet’s membrane carrying viable endothelium through a small scleral incision. Cornea 21:415–418, doi:10.1097/00003226-200205000-00016 PubMedCrossRefGoogle Scholar
  13. 13.
    Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S et al (2004) Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci 45:2992–2997, doi:10.1167/iovs.03-1174 PubMedCrossRefGoogle Scholar
  14. 14.
    Mohay J, Lange TM, Soltau JB, Wood TO, Mclaughlin BJ (1994) Transplantation of corneal endothelial-cells using a cell carrier device. Cornea 13:173–182, doi:10.1097/00003226-199403000-00011 PubMedCrossRefGoogle Scholar
  15. 15.
    Moller-Pedersen T, Hartmann U, Ehlers N, Engelmann K (2001) Evaluation of potential organ culture media for eye banking using a human corneal endothelial cell growth assay. Graefes Arch Clin Exp Ophthalmol 239:778–782, doi:10.1007/s004170100354 PubMedCrossRefGoogle Scholar
  16. 16.
    Nitschke M, Götze T, Gramm S, Werner C (2007) Detachment of human endothelial cell sheets from thermo-responsive poly(NiPAAm-co-DEGMA) carriers. Express Polym Lett 1:660–666, doi:10.3144/expresspolymlett.2007.90 CrossRefGoogle Scholar
  17. 17.
    Nitschke M, Gramm S, Götze T, Valtink M, Drichel J, Voit B et al (2007) Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res A 80:1003–1010, doi:10.1002/jbm.a.31098 PubMedGoogle Scholar
  18. 18.
    Nitschke M, König U, Lappan U, Minko S, Simon F, Zschoche S et al (2007) Low pressure plasma based approaches to fluorocarbon polymer surface modification. J Appl Polym Sci 103:100–109, doi:10.1002/app.24717 CrossRefGoogle Scholar
  19. 19.
    Nitschke M, Zschoche S, Baier A, Simon F, Werner C (2004) Low pressure plasma immobilization of thin hydrogel films on polymer surfaces. Surf Coat Tech 185:120–125, doi:10.1016/j.surfcoat.2003.12.006 CrossRefGoogle Scholar
  20. 20.
    Richards RG, Stiffanic M, Owen GRH, Riehle M, Gwynn IAP, Curtis ASG (2001) Immunogold labelling of fibroblast focal adhesion sites visualised in fixed material using scanning electron microscopy, and living, using internal reflection microscopy. Cell Biol Int 25:1237–1249, doi:10.1006/cbir.2001.0807 PubMedCrossRefGoogle Scholar
  21. 21.
    Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595, doi:10.1016/j.progpolymsci.2007.01.006 CrossRefGoogle Scholar
  22. 22.
    Schild HG (1992) Poly (N-Isopropylacrylamide) - experiment, theory and application. Prog Polym Sci 17:163–249, doi:10.1016/0079-6700(92)90023-R CrossRefGoogle Scholar
  23. 23.
    Schmaljohann D (2005) Thermo-responsive polymers and hydrogels in tissue engineering. e-Polymers 21, http://www.e-polymers.org/journal/abstract.cfm?abstract_Id=811
  24. 24.
    Schmaljohann D, Beyerlein D, Nitschke M, Werner C (2004) Thermo-reversible swelling of thin hydrogel films immobilized by low-pressure plasma. Langmuir 20:10107–10114, doi:10.1021/la034653f PubMedCrossRefGoogle Scholar
  25. 25.
    Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C (2003) Thermo-responsive PNiAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4:1733–1739, doi:10.1021/bm034160p PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuda Y, Kikuchi A, Yamato M, Sakurai Y, Umezu M, Okano T (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res A 69:70–78, doi:10.1002/jbm.a.20114 PubMedCrossRefGoogle Scholar
  27. 27.
    Valtink M, Gruschwitz R, Funk RHW, Engelmann K (2007) Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs 187:286–294, doi:10.1159/000113406 CrossRefGoogle Scholar
  28. 28.
    van Dooren BTH, Mulder PGH, Nieuwendaal CP, Beekhuis WH, Melles GRJ (2007) Endothelial cell density after posterior lamellar keratoplasty: Five- to seven-year follow-up. Am J Ophthalmol 144:471–473, doi:10.1016/j.ajo.2007.05.015 PubMedCrossRefGoogle Scholar
  29. 29.
    Wencan W, Mao Y, Wentao Y, Fan L, Jia Q, Qinmei W et al (2007) Using basement membrane of human amniotic membrane as a cell carrier for cultivated cat corneal endothelial cell transplantation. Curr Eye Res 32:199–215, doi:10.1080/02713680601174165 PubMedCrossRefGoogle Scholar
  30. 30.
    Yamato M, Akiyama Y, Kobayashi H, Yang J, Kikuchi A, Okano T (2007) Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog Polym Sci 32:1123–1133, doi:10.1016/j.progpolymsci.2007.06.002 CrossRefGoogle Scholar
  31. 31.
    Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H et al (2006) Cell delivery in regenerative medicine: The cell sheet engineering approach. J Control Release 116:193–203, doi:10.1016/j.jconrel.2006.06.022 PubMedCrossRefGoogle Scholar
  32. 32.
    Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M et al (2007) Reconstruction of functional tissues with cell sheet engineering. Biomaterials 28:5033–5043, doi:10.1016/j.biomaterials.2007.07.052 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas Götze
    • 1
  • Monika Valtink
    • 2
  • Mirko Nitschke
    • 1
  • Stefan Gramm
    • 3
  • Thomas Hanke
    • 4
  • Katrin Engelmann
    • 5
    • 7
  • Carsten Werner
    • 1
    • 6
    • 7
  1. 1.Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of BiomaterialsDresdenGermany
  2. 2.Institute of Anatomy, Medical Faculty “Carl Gustav Carus”Technische Universität DresdenDresdenGermany
  3. 3.Oxyphen GmbHGroßerkmannsdorfGermany
  4. 4.Institute of Materials Science, Max Bergmann Center of BiomaterialsTechnische Universität DresdenDresdenGermany
  5. 5.Department of OphthalmologyKlinikum Chemnitz gGmbHChemnitzGermany
  6. 6.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  7. 7.CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Biotechnology CenterDresdenGermany

Personalised recommendations