Advertisement

Prolonged retinal arteriovenous passage time is correlated to ocular perfusion pressure in normal tension glaucoma

  • Niklas Plange
  • Marion Kaup
  • Andreas Remky
  • Kay Oliver Arend
Glaucoma

Abstract

Background

The pathogenesis of normal tension glaucoma (NTG) might be related to impaired autoregulation of ocular blood flow. The purpose of the study is to evaluate retinal haemodynamics by fluorescein angiography and to correlate arteriovenous passage times (AVP) with ocular perfusion pressure in patients with NTG and controls.

Methods

Thirty-five patients with NTG without any topical treatment (mean age 53 ± 11 years) and 35 age-matched controls (mean age 53 ± 11 years) were included in this study. Retinal AVP was assessed by video fluorescein angiography using a scanning laser ophthalmoscope (Rodenstock, Germany). Dye dilution curves of temporal superior and inferior arterioles and venules were evaluated by digital image analysis. AVP was correlated to mean arterial blood pressure and ocular perfusion pressure.

Results

The AVP was significantly prolonged in patients with NTG compared to controls (1.82 ± 0.57 versus 1.42 ± 0.46, p = 0.002). Patients with NTG and controls showed no significant differences in intraocular pressure, mean arterial pressure and mean and diastolic ocular perfusion pressure. The AVP was significantly correlated to mean arterial pressure and mean and diastolic ocular perfusion pressure in patients with NTG (r = −0.54; p = 0.0006, r = −0.51; p = 0.002, r = −0.49, p = 0.002), but not in controls (r = −0.21; p = 0.23, r = −0.19; p = 0.27, r = 0.02, p = 0.93).

Conclusions

Patients with NTG exhibit prolonged retinal AVP compared to controls. A significant correlation of retinal haemodynamics to mean arterial blood pressure and ocular perfusion pressure might reflect impaired autoregulation in NTG.

Keywords

Normal tension glaucoma Ocular blood flow Arteriovenous passage time Ocular perfusion pressure Autoregulation 

Notes

Funding/Support

none

Financial disclosures

none

Contributions of authors

Design and conduct of the study (NP, MK, AR, OA), collection, management, analysis and interpretation of the data (NP, MK, AR, OA), preparation and approval of the manuscript (NP, MK, AR, OA).

References

  1. 1.
    Arend O, Plange N, Sponsel WE, Remky A (2004) Pathogenetic aspects of the glaucomatous optic neuropathy: fluorescein angiographic findings in patients with primary open-angle glaucoma. Brain Res Bull 62:517–524PubMedCrossRefGoogle Scholar
  2. 2.
    Flammer J, Orgül S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17(2):267–289PubMedCrossRefGoogle Scholar
  3. 3.
    Hayreh SS (1995) The 1994 Von Sallman lecture: the optic nerve circulation in health and disease. Exp Eye Res 61:259–272PubMedCrossRefGoogle Scholar
  4. 4.
    Plange N, Kaup M, Huber K, Remky A, Arend O (2006) Fluorescein filling defects of the optic nerve head in normal tension glaucoma, primary open-angle glaucoma, ocular hypertension and healthy controls. Ophthal Physiol Opt 26:26–32CrossRefGoogle Scholar
  5. 5.
    Arend O, Remky A, Plange N, Martin BJ, Harris A (2002) Capillary density and retinal diameter measurements and their impact on altered retinal circulation in glaucoma: a digital fluorescein angiographic study. Br J Opthalmol 86:429–433CrossRefGoogle Scholar
  6. 6.
    Wolf S, Arend O, Reim M (1994) Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol 38:S95–S100PubMedCrossRefGoogle Scholar
  7. 7.
    Bertram B, Wolf S, Fiehofer S, Schulte K, Arend O, Reim M (1991) Retinal circulation times in diabetes mellitus type 1. Br J Ophthalmol 75:462–465PubMedCrossRefGoogle Scholar
  8. 8.
    Bertram B, Hoberg A, Wolf S, Schulte K, Reim M (1991) Video fluorescein angiography studies in acute anterior ischemic optic neuropathy. Klin Monatsbl Augenheilk 199:419–423CrossRefGoogle Scholar
  9. 9.
    Remky A, Wolf S, Hamid M, Bertram B, Schulte K, Arend O, Reim M (1994) Effect of hemodilution on retinal hemodynamics in retinal branch vein occlusion. Ophthalmologe 91:288–292PubMedGoogle Scholar
  10. 10.
    Wolf S, Arend O, Bertram B, Remky A, Schulte K, Wald KJ, Reim M (1994) Hemodilution therapy in central retinal vein occlusion. One-year results of a prospective randomized study. Graefes Arch Clin Exp Ophthalmol 232:33–39PubMedCrossRefGoogle Scholar
  11. 11.
    Wolf S, Arend O, Sponsel WE, Schulte K, Cantor LB, Reim M (1993) Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 100:1561–1566PubMedGoogle Scholar
  12. 12.
    Arend O, Remky A, Cantor LB, Harris A (2000) Altitudinal visual field asymmetry is coupled with altered retinal circulation in patients with normal pressure glaucoma. Br J Ophthalmol 84:1008–1012PubMedCrossRefGoogle Scholar
  13. 13.
    Grunwald JE, Sinclair SH, Riva CE (1982) Autoregulation of the retinal circulation in response to decrease of intraocular pressure below normal. Invest Ophthalmol Vis Sci 23:124–127PubMedGoogle Scholar
  14. 14.
    Harris A, Arend O, Bohnke K, Kroepfl E, Danis R, Martin B (1996) Retinal blood flow during dynamic exercise. Graefes Arch Clin Exp Ophthalmol 234:440–444PubMedCrossRefGoogle Scholar
  15. 15.
    Riva CA, Grunwald JE, Petrig BL (1986) Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 27:1706–1712PubMedGoogle Scholar
  16. 16.
    Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation in retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–38PubMedGoogle Scholar
  17. 17.
    Robinson F, Riva CE, Grunwald JE, Petrig BL, Sinclair SH (1986) Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27:722–726PubMedGoogle Scholar
  18. 18.
    Zetlan SR, Sponsel WE, Stodtmeister R (1992) Retinal capillary hemodynamics, visual-evoked potentials, and pressure tolerance in normal human eyes. Invest Ophthalmol Vis Sci 33:1857–1863PubMedGoogle Scholar
  19. 19.
    Anderson DR (1996) Glaucoma, capillaries and pericytes, 1. Blood flow regulation. Ophthalmologica 210:257–262PubMedGoogle Scholar
  20. 20.
    Hayreh SS (1997) Factors influencing blood flow in the optic nerve head. J Glaucoma 6:412–425PubMedGoogle Scholar
  21. 21.
    Orgül S, Gugleta K, Flammer J (1999) Physiology of perfusion as it relates to the optic nerve head. Surv Ophthalmol 43:S17–S26PubMedCrossRefGoogle Scholar
  22. 22.
    Schulte K, Wolf S, Arend O, Harris A, Henle C, Reim M (1996) Retinal hemodynamics during increased intraocular pressure. German J Ophthalmol 5:1–5Google Scholar
  23. 23.
    Sponsel WE, Zetlan SR, Stodtmeister R, Kaufman P (1997) Retinal capillary hemodynamics and VEP/pressure tolerance: evidence of retinal microcirculatory compromise in treated glaucomatous eyes. Ophthalmologica 211:172–177PubMedCrossRefGoogle Scholar
  24. 24.
    Grunwald JE, Riva CE, Stone RA, Keates EU, Petrig BE (1984) Retinal autoregulation in open-angle glaucoma. Ophthalmology 91:1690–1694PubMedGoogle Scholar
  25. 25.
    Pillunat LE, Stodtmeister R, Wilmanns I (1987) Pressure compliance of the optic nerve head in low tension glaucoma. Br J Ophthalmol 71:181–187PubMedCrossRefGoogle Scholar
  26. 26.
    Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt study. Ophthalmology 107:1287–93PubMedCrossRefGoogle Scholar
  27. 27.
    Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 113:216–221PubMedGoogle Scholar
  28. 28.
    European Glaucoma Society (2003) In: Traverso CE, Grehn F, Hollo G, Lachkar Y, Migdal C, Thygesen J (eds) Terminology and guidelines for glaucoma. 2nd edn. Editrice DOGMA S.r.l., Savona Italy, pp 24–32Google Scholar
  29. 29.
    Robert Y, Steiner D, Hendrickson P (1989) Papillary circulation dynamics in glaucoma. Graefes Arch Clin Exp Ophthalmol 227:436–439PubMedCrossRefGoogle Scholar
  30. 30.
    Nagel E, Vilser W, Lanzl IM (2001) Retinal vessel reaction to short-term IOP elevation in ocular hypertensive and glaucoma patients. Eur J Ophthalmol 11:338–344PubMedGoogle Scholar
  31. 31.
    Arend O, Remky A, Redbrake C, Arend S, Wenzel M, Harris A (1999) Retinale Hämodynamik bei Patienten mit Normaldruckglaukom. Ophthalmologe 96:24–29PubMedCrossRefGoogle Scholar
  32. 32.
    Huber K, Plange N, Remky A, Arend O (2004) Comparison of colour Doppler imaging and retinal scanning laser fluorescein angiography in healthy volunteers and normal pressure glaucoma patients. Acta Ophthalmol Scand 82(4):426–431PubMedCrossRefGoogle Scholar
  33. 33.
    Grunwald JE, Piltz J, Hariprasad SM, Dupont J, Maguire MG (1999) Optic nerve blood flow in glaucoma: effect of systemic hypertension. Am J Ophthalmol 127:516–522PubMedCrossRefGoogle Scholar
  34. 34.
    Fuchsjäger-Mayrl G, Wally B, Georgopoulos M, Rainer G, Kircher K, Buehl W, Amoako-Mensah T, Eichler H-G, Vass C, Schmetterer L (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45:834–839PubMedCrossRefGoogle Scholar
  35. 35.
    Plange N, Kaup M, Daneljan L, Predel HG, Remky A, Arend O (2006) 24-hour blood pressure monitoring in normal tension glaucoma: night time blood pressure variability. J Hum Hypertens 20:137–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Niklas Plange
    • 1
  • Marion Kaup
    • 1
  • Andreas Remky
    • 1
  • Kay Oliver Arend
    • 2
  1. 1.Department of OphthalmologyRWTH Aachen UniversityAachenGermany
  2. 2.Eye Center AlsdorfAlsdorfGermany

Personalised recommendations