Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials

  • Laurent Kodjikian
  • Emmanuelle Casoli-Bergeron
  • Florence Malet
  • Hélène Janin-Manificat
  • Jean Freney
  • Carole Burillon
  • Joseph Colin
  • Jean-Paul Steghens
Basic Science



As bacterial adhesion to contact lenses may contribute to the pathogenesis of keratitis, the aim of our study was to investigate in vitro adhesion of clinically relevant bacteria to conventional hydrogel (standard HEMA) and silicone-hydrogel contact lenses using a bioluminescent ATP assay.


Four types of unworn contact lenses (Etafilcon A, Galyfilcon A, Balafilcon A, Lotrafilcon B) were incubated with Staphylococcus epidermidis (two different strains) and Pseudomonas aeruginosa suspended in phosphate buffered saline (PBS). Lenses were placed with the posterior surface facing up and were incubated in the bacterial suspension for 4 hours at 37°C. Bacterial binding was then measured and studied by bioluminescent ATP assay. Six replicate experiments were performed for each lens and strain.


Adhesion of all species of bacteria to standard HEMA contact lenses (Etafilcon A) was found to be significantly lower than that of three types of silicone-hydrogel contact lenses, whereas Lotrafilcon B material showed the highest level of bacterial binding. Differences between species in the overall level of adhesion to the different types of contact lenses were observed. Adhesion of P. aeruginosa was typically at least 20 times greater than that observed with both S. epidermidis strains.


Conventional hydrogel contact lenses exhibit significantly lower bacterial adhesion in vitro than silicone-hydrogel ones. This could be due to the greater hydrophobicity but also to the higher oxygen transmissibility of silicone–hydrogel lenses.


Keratitis Contact lenses Bacterial adhesion Bioluminescence Silicone-hydrogel 



We would like to thank Christine Chaumeil, MD (Microbiology Department of National XV-XX Hospital, Paris, France), who provided one of the Staphylococcus epidermidis strains, and Cecile Bebear, MD (Microbiology Department of Bordeaux Pellegrin University Hospital), who provided the Pseudomonas aeruginosa strain. We thank Sarah Somerville (IARC) for careful English editing.


  1. 1.
    Morgan PB, Woods C, Jones D, Efron N, Tan KO, Gonzalez MY, Pesinova A, Grein HJ, Runberg SE, Tranoudis IG, Chandrinos A, Fine P, Montani G, Morani E, Itoi M, Bendoriene J, van der Worp E, Helland M, Phillips G, Belousov V, Barr JT (2007) International contact lens prescribing in 2006. Contact Lens Spectr 22:34–38Google Scholar
  2. 2.
    Sweeney D (2004) Silicone hydrogels. Continuous-wear contact lenses, 2nd edn. Butterworth-Heinemann, EdinburghGoogle Scholar
  3. 3.
    Kodjikian L, Burillon C, Roques C, Pellon G, Renaud FN, Hartmann D, Freney J (2004) Intraocular lenses, bacterial adhesion and endophthalmitis prevention: a review. Biomed Mater Eng 14:395–409PubMedGoogle Scholar
  4. 4.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedCrossRefGoogle Scholar
  5. 5.
    LeMagrex E, Brisset L, Jacquelin L, Carquin J, Bonnaveiro N (1994) Susceptibility to antibacterials and compared metabolism of suspended bacteria versus embedded bacteria in biofilms. Colloids Surf B Biointerfaces 2:89–95CrossRefGoogle Scholar
  6. 6.
    Anwar H, Strap JL, Costerton JW (1992) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351PubMedGoogle Scholar
  7. 7.
    Kodjikian L, Burillon C, Roques C, Pellon G, Freney J, Renaud F (2003) Bacterial adherence of Staphylococcus epidermidis to intraocular lenses: a bioluminescence and scanning electron microscopy study. Invest Ophthalmol Vis Sci 44:4388–4394PubMedCrossRefGoogle Scholar
  8. 8.
    Kodjikian L, Burillon C, Lina G, Roques C, Pellon G, Freney J, Renaud F (2003) Biofilm formation on intraocular lenses by a clinical strain encoding ica locus: a scanning electron microscopy study. Invest Ophthalmol Vis Sci 44:4382–4387PubMedCrossRefGoogle Scholar
  9. 9.
    Kodjikian L, Renaud F, Roques C, Garweg J, Pellon G, Freney J, Burillon C (2005) In vitro influence of vancomycin on adhesion of a Staphylococcus epidermidis strain encoding ica locus to intraocular lenses. J Cataract Refract Surg 31:1050–1058PubMedCrossRefGoogle Scholar
  10. 10.
    Burillon C, Kodjikian L, Pellon G, Martra A, Freney J, Renaud FN (2002) In vitro study of bacterial adherence to different types of intraocular lenses. Drug Dev Ind Pharm 28:95–99PubMedCrossRefGoogle Scholar
  11. 11.
    Ludwicka A, Jansen B, Wadstrom T, Pulverer G (1984) Attachment of staphylococci to various synthetic polymers. Zentralbl Bakteriol Mikrobiol Hyg [A] 256:479–489Google Scholar
  12. 12.
    Sheehan D (2000) Spectroscopic techniques. In physical biochemistry: principles and applications. Wiley, Chichester, pp 61–120Google Scholar
  13. 13.
    Champiat D (1992) Biochimiluminescence and biotechnology. Le technoscope de Biofutur 51:8Google Scholar
  14. 14.
    Campbell A (1988) Chemiluminescence: principles and applications in biology and medicine. VCH, Ellis Horwood Ltd., New York, p. 265Google Scholar
  15. 15.
    Lundberg F, Gouda I, Larm O, Galin MA, Ljungh A (1998) A new model to assess staphylococcal adhesion to intraocular lenses under in vitro flow conditions. Biomaterials 19:1727–1733PubMedCrossRefGoogle Scholar
  16. 16.
    Farber BF, Wolff AG (1993) Salicylic acid prevents the adherence of bacteria and yeast to silastic catheters. J Biomed Mater Res 27:599–602PubMedCrossRefGoogle Scholar
  17. 17.
    Wahl J, Katz H, Abrams D (1991) Infectious keratitis in Baltimore. Ann Ophthalmol 23:234–237PubMedGoogle Scholar
  18. 18.
    Sharma S, Gopalakrishnan S, Aasuri M, Garg P, Rao G (2003) Trends in contact lens-associated microbial keratitis in Southern India. Ophthalmology 110:138–143PubMedCrossRefGoogle Scholar
  19. 19.
    Verhelst D, Koppen C, Looveren JV, Meheus A, Tassignon M (2005) Clinical, epidemiological and cost aspects of contact lens related infectious keratitis in Belgium: results of a seven-year retrospective study. Bull Soc Belge Ophtalmol 297:7–15PubMedGoogle Scholar
  20. 20.
    Ahanotu EN, Hyatt MD, Graham MJ, Ahearn DG (2001) Comparative radiolabel and ATP analyses of adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to hydrogel lenses. Clao J 27:89–93PubMedGoogle Scholar
  21. 21.
    Bruinsma GM, van der Mei HC, Busscher HJ (2001) Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 22:3217–3224PubMedCrossRefGoogle Scholar
  22. 22.
    George M, Ahearn D, Pierce G, Gabriel M (2003) Interactions of Pseudomonas aeruginosa and Staphylococcus epidermidis in adhesion to a hydrogel. Eye Contact Lens 29:S105–S109 discussion S115–118, S192–S194PubMedCrossRefGoogle Scholar
  23. 23.
    Henriques M, Sousa C, Lira M, Elisabete M, Oliveira R, Azeredo J (2005) Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to silicone-hydrogel contact lenses. Optom Vis Sci 82:446–450PubMedCrossRefGoogle Scholar
  24. 24.
    Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–283PubMedCrossRefGoogle Scholar
  25. 25.
    Schnider C, Steffen R (2005) New generation of silicon-hydrogel contact lenses for daily wear. Oftalmologia 49:78–81PubMedGoogle Scholar
  26. 26.
    Snyder C (2004) Contact lenses–now, and then. Cont Lens Anterior Eye 27:111–113PubMedCrossRefGoogle Scholar
  27. 27.
    Pascual A, Fleer A, Westerdaal NA, Verhoef J (1986) Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro. Eur J Clin Microbiol 5:518–522PubMedCrossRefGoogle Scholar
  28. 28.
    Ruther P, Vincent R (1980) The adhesion of microorganisms to surfaces, physico–chemical aspects. In: Berkeley RCW, Melling LJJ, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwwod, London, pp 79–91Google Scholar
  29. 29.
    Magnusson KE (1982) Hydrophobic interaction–a mechanism of bacterial binding. Scand J Infect Dis Suppl 33:32–36PubMedGoogle Scholar
  30. 30.
    Weikart CM, Matsuzawa Y, Winterton L, Yasuda HK (2001) Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. J Biomed Mater Res 54:597–607PubMedCrossRefGoogle Scholar
  31. 31.
    Lopez-Alemany A, Compan V, Refojo MF (2002) Porous structure of purevision versus Focus Night&Day and conventional hydrogel contact lenses. J Biomed Mater Res 63:319–325PubMedCrossRefGoogle Scholar
  32. 32.
    Jones L, Long J (2002) The impact of contact lens care regimens on the in vitro wettability of conventional and silicone-hydrogel contact lens materials. Invest Ophthalmol Vis Sci: ARVO abstract # 3097Google Scholar
  33. 33.
    Cheng L, Muller SJ, Radke CJ (2004) Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Curr Eye Res 28:93–108PubMedCrossRefGoogle Scholar
  34. 34.
    de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138CrossRefGoogle Scholar
  35. 35.
    Zhang T, Bishop P (1994) Density, porosity, and pore structure of biofilms. Wat Res 28:2267–2277CrossRefGoogle Scholar
  36. 36.
    Pitt WG, Ross SA (2003) Ultrasound increases the rate of bacterial cell growth. Biotechnol Prog 19:1038–1044PubMedCrossRefGoogle Scholar
  37. 37.
    Madigan MC, Holden BA (1992) Reduced epithelial adhesion after extended contact lens wear correlates with reduced hemidesmosome density in cat cornea. Invest Ophthalmol Vis Sci 33:314–323PubMedGoogle Scholar
  38. 38.
    Cavanagh HD, Ladage PM, Li SL, Yamamoto K, Molai M, Ren DH, Petroll WM, Jester JV (2002) Effects of daily and overnight wear of a novel hyper oxygen-transmissible soft contact lens on bacterial binding and corneal epithelium: a 13-month clinical trial. Ophthalmology 109:1957–1969PubMedCrossRefGoogle Scholar
  39. 39.
    Morgan PB, Efron N, Hill EA, Raynor MK, Whiting MA, Tullo AB (2005) Incidence of keratitis of varying severity among contact lens wearers. Br J Ophthalmol 89:430–436PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia-Saenz MC, Arias-Puente A, Fresnadillo-Martinez MJ, Paredes-Garcia B (2002) Adherence of two strains of Staphylococcus epidermidis to contact lenses. Cornea 21:511–515PubMedCrossRefGoogle Scholar
  41. 41.
    Vermeltfoort PB, Rustema-Abbing M, de Vries J, Bruinsma GM, Busscher HJ, van der Linden ML, Hooymans JM, van der Mei HC (2006) Influence of day and night wear on surface properties of silicone hydrogel contact lenses and bacterial adhesion. Cornea 25:516–523PubMedCrossRefGoogle Scholar
  42. 42.
    Butrus S, Klotz S, Misra R (1987) The adherence of Pseudomonas aeruginosa to soft contact lenses. Ophthalmology 94:1310–1314PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laurent Kodjikian
    • 1
    • 2
    • 3
  • Emmanuelle Casoli-Bergeron
    • 2
  • Florence Malet
    • 4
  • Hélène Janin-Manificat
    • 1
  • Jean Freney
    • 2
  • Carole Burillon
    • 2
    • 3
  • Joseph Colin
    • 4
  • Jean-Paul Steghens
    • 2
    • 5
  1. 1.Department of OphthalmologyCroix-Rousse University HospitalLyonFrance
  2. 2.University of Lyon, UR-RTI2B, UCBL ILyonFrance
  3. 3.Department of OphthalmologyEdouard Herriot University HospitalLyonFrance
  4. 4.Department of OphthalmologyPellegrin University HospitalBordeauxFrance
  5. 5.Department of Biochemistry, UF21 455Edouard Herriot HospitalLyonFrance

Personalised recommendations