Measuring contrast sensitivity in normal subjects with OPTEC® 6500: influence of age and glare

  • Bettina Hohberger
  • Robert Laemmer
  • Werner Adler
  • Anselm G. M. Juenemann
  • Folkert K. Horn
Basic Science

Abstract

Background

The purpose of this study was to develop age-related curves for contrast sensitivity (CS) in normal subjects under day and night conditions with and without glare.

Methods

Sixty-one healthy eyes from 61 subjects were measured with the OPTEC® 6500 P under day and night conditions (luminance levels: 85 cd/m2 and 3.0 cd/m2 with and without glare; spatial frequencies: 1.5, 3, 6, 12 and 18 cycles/degree). A reliability analysis with five repeated measurements of six persons on 4 days was performed to examine the repeatability. The influence of age on contrast sensitivity, forward and backward scatter was examined by means of linear regression.

Results

Contrast sensitivity was significantly reduced under night conditions with glare, whereas glare had less influence under daylight illumination. Mean reliability coefficients are 0.87 (day), 0.77 (day with glare), 0.69 (night) and 0.81 (night with glare), which suggests sufficient retest reliability of the device. Regression analyses showed a highly significant influence of age, but the variance of the measurement values is not explained by age alone. The coefficients of determination for the regression of area under the log contrast sensitivity function (AULCSF) on age are 0.33 (photopic), 0.34 (photopic with glare), 0.29 (mesopic) and 0.36 (mesopic with glare, p < 0.0001 in all cases).

Conclusion

A significant relationship between age, CS and scatter was confirmed in our study. The results provide baseline values for the examination of patients with different diseases in which contrast sensitivity is impaired (such as glaucoma, cataracts and amblyopia) and might be useful in studies of roadworthiness or in investigation of the impact of intraocular lenses.

Keywords

Day vision Night vision Contrast sensitivity Normal values Glare 

References

  1. 1.
    Anderson SJ, Holliday IE (1995) Night driving: effects of glare from vehicle headlights on motion perception. Ophthalmic Physiol Opt 15:545–551PubMedCrossRefGoogle Scholar
  2. 2.
    Artal P, Ferro M, Miranda I, Navarro R (1993) Effects of aging in retinal image quality. J Opt Soc Am A 10:1656–1662PubMedCrossRefGoogle Scholar
  3. 3.
    Babizhayev MA (2003) Glare Disability and Driving Safety. Ophthalmic Res 35:19–25PubMedCrossRefGoogle Scholar
  4. 4.
    Bach M (1996) The Freiburg Visual Acuity test-automatic measurement of visual acuity. Optom Vis Sci 73:49–53PubMedCrossRefGoogle Scholar
  5. 5.
    Bellmann C, Unnebrink K, Rubin GS, Miller D, Holz FG (2003) Visual acuity and contrast sensitivity in patients with neovascular age-related macular degeneration. Results from the Radiation Therapy for Age-Related Macular Degeneration (RAD-) Study. Graefes Arch Clin Exp Ophthalmol 241:968–974PubMedCrossRefGoogle Scholar
  6. 6.
    Bühren J, Terzi E, Bach M, Wesemann W, Kohnen T (2006) Measuring contrast sensitivity under different lighting conditions: comparison of three tests. Optom Vis Sci 83(5):290–298PubMedCrossRefGoogle Scholar
  7. 7.
    Decina L, Staplin L (1993) Retrospective evaluation of alternative vision screening criteria for older and younger drivers. Accid Anal Prev. 25:267–275PubMedCrossRefGoogle Scholar
  8. 8.
    De Natale R, Flammer J, Zulauf M, Bebie T (1988) Influence of Age on the Transparency of the Lens in Normals: a Population Study with Help of the Lens Opacity Meter 701. Ophthalmolgica 197:14–18Google Scholar
  9. 9.
    De Waard PW, IJspeert JK, van den Berg TJ, de Jong PT (1992) Intraocular light scattering in age-related cataracts. Invest Ophthalmol Vis Sci 33:618–625PubMedGoogle Scholar
  10. 10.
    Dougherty BE, Flom RE, Bullimore MA (2005) An evaluation of the Mars Letter Contrast Sensitivity Test. Optom Vis Sci 82:970–975PubMedCrossRefGoogle Scholar
  11. 11.
    Elliott DB (1987) Contrast sensitivity decline with ageing: a neural or optical phenomenon? Ophthalmic Physiol Opt 7:415–419PubMedCrossRefGoogle Scholar
  12. 12.
    Elliott DB, Bullimore MA (1993) Assessing the reliability, discriminative ability, and validity of disability glare tests. Invest Ophthalmol Vis Sci 34:108–119PubMedGoogle Scholar
  13. 13.
    Flammer J, Bebie H (1987) Lens Opacity Meter: a new instrument to quantify lens opacity. Ophthalmolgica 195:69–72Google Scholar
  14. 14.
    Giersch A, Speeg-Schatz C, Tondre M. Gottenkiene S (2006) Impairment of contrast sensitivity in long-term lorazepam users. Psychopharmacology (Berl) 186:594–600CrossRefGoogle Scholar
  15. 15.
    Ginsburg AP (1981) Spatial Filtering and Vision: implications for Normal and abnormal Vision. Clinical Applications of Visual Psychophysics: 70Google Scholar
  16. 16.
    Ginsburg AP (1987) Contrast sensitivity, drivers’ visibility, and vision standards. From: Visibility for Highway Guidance and Hazard Detection, Transportation Research Record 1149, Transportation Research Board, National Research Council, Washington, DC 32–39Google Scholar
  17. 17.
    Ginsburg AP (1987) The Evaluation of Contact Lenses and Refractive Surgery Using Contrast Sensitivity. Contact Lenses: the CLAO Guide to Basic Science and Clinical Science Update 2Google Scholar
  18. 18.
    Ginsburg AP, Cheetham J, DeGryse R et al (1995) Effects of flurbiprofen and indomethacin on acute cystoid macular edema after cataract surgery: functional vision and contrast sensitivity. J Cataract Refract Surg 21:82–92PubMedGoogle Scholar
  19. 19.
    Ginsburg AP (1996) Next generation contrast sensitivity testing. In Rosenthal B, Cole R (eds) Functional Assessment of Low Vision. St. Louis Mosby Year Book, Inc. 77–88Google Scholar
  20. 20.
    Ginsburg AP (2006) Contrast sensitivity: determining the visual quality and function of cataract, intraocular lenses and refractive surgery. Curr Opin Ophthalmol 17:19–26PubMedCrossRefGoogle Scholar
  21. 21.
    Guirao A, Gonzalez C, Redondo M, Geraghty E, Norrby S, Artal P (1999) Average optical performance of the human eye as a function of age in a normal population. Invest Ophthalmol Vis Sci. 40:203–213PubMedGoogle Scholar
  22. 22.
    Haymes SA, Roberts KF, Cruess AF, Nicolela Mt, LeBlanc RP, Ramsey MS, Chauhan BC, Artes PH (2006) The letter contrast sensitivity test: clinical evaluation of a new design. Invest Ophthalmol Vis Sci 47:2739–2745PubMedCrossRefGoogle Scholar
  23. 23.
    Hitchcock EM, Dick RB, Krieg EF (2004) Visual contrast sensitivity testing: a comparison of two F.A.C.T. test types. Neurotoxicol and Teratol 26:271–277CrossRefGoogle Scholar
  24. 24.
    Horn F, Martus P, Korth M (1995) Comparison of temporal and statiotemporal contrast-sensitivity tests in normal subjects and glaucoma patients. German J Ophthalmol 4:97–102Google Scholar
  25. 25.
    Horn FK, Junemann AG, Korth M (2001) Two methods of lens opacity measurements in glaucomas. Doc Ophthalmol 103:105–117PubMedCrossRefGoogle Scholar
  26. 26.
    Ijspeert JK, de waard PWT, van den Berg TJTP, de Jong PTVM (1990) The intraocular straylight function in 129 healthy volunteers: dependence on angle, age and pigmentation. Vision Res 30:699–707PubMedCrossRefGoogle Scholar
  27. 27.
    Jackson GR, Owsley C, McGwin G (1999) Aging and dark adaptation. Vision Research 39:3975–3982PubMedCrossRefGoogle Scholar
  28. 28.
    Larsson E, Rydberg A, Holmström G (2006) Contrast sensitivity in 10 year old preterm and full term children: a population based study. British Journal of Ophthalmology 90:87–90PubMedCrossRefGoogle Scholar
  29. 29.
    Kennedy RS, Dunlap WP (1990) Assessment of the Vistech contrast sensitivity test for repeated-measures applications. Optom Vis Sci 67:248–251PubMedCrossRefGoogle Scholar
  30. 30.
    Kluka DA, Love PA (1993) The effects of daily-wear contact lenses upon contrast sensitivity in selected professional and collegiate female tennis players. J Am Optom Assoc 64:182–186PubMedGoogle Scholar
  31. 31.
    Lachenmayr B, Buser A, Keller O, Berger J (1996) Sehstörungen als Unfallursache. In: Berichte der Bundesanstalt für Straßenwesen (BASt). Mensch und Sicherheit. Wirtschaftsverlag NW, Bremerhaven, Heft M65Google Scholar
  32. 32.
    Lachenmayr B, Berger J, Buser A, Keller O (1998) Reduziertes Sehvermögen führt zu erhöhtem Unfallrisiko im Straßenverkehr. Ophthalmolog 95:44–50Google Scholar
  33. 33.
    Lachenmayr B (2005) Zur Lage der Begutachtung nach der Änderungsverordnung zur FeV. Ophthalmologe 102:27–32PubMedCrossRefGoogle Scholar
  34. 34.
    Mäntyjärvi M, Laitinen T (2001) Normal values for the Pelli-Robson contrast sensitivity test. J Cataract Refract Surg 27:261–266PubMedCrossRefGoogle Scholar
  35. 35.
    Marcos S (2001) Aberrations and visual performance following standard laser vision correction. J Refract Surg 17:S596–S601PubMedGoogle Scholar
  36. 36.
    Marmor MF, Gawande A (1988) Effect of visual blur on contrast sensitivity. Clinical implications. Ophthalmology 95:139–143PubMedGoogle Scholar
  37. 37.
    McKee SP, Klein SA, Teller DY (1985) Statistical properties of forced-choice psychometric functions: implications of probit analysis. Percept Psychophys 37:286–298PubMedGoogle Scholar
  38. 38.
    McLellan JS, Marcos S, Burns SA (2001) Age-related changes in monochromatic wave aberrations of the human eye. Invest Ophthalmol Vis Sci 42:1390–1395PubMedGoogle Scholar
  39. 39.
    Meacock WR, Spalton DJ, Boyce J, Marshall J (2003) The effect of posterior capsule opacification on visual function. Invest Ophthalmol Vis Sci 44:4665–4669PubMedCrossRefGoogle Scholar
  40. 40.
    Nadler MP, Miller D, Nadler DJ (1990) Glare and Contrast Sensitivity For Clinicans. Springer, New YorkGoogle Scholar
  41. 41.
    Nomura H, Ando F, Niino N, Shimokata H, Miyake Y (2003) Age-related Change in Contrast Sensitivity Among Japanese Adults. Jpn J Ophthalmol 47:299–303PubMedCrossRefGoogle Scholar
  42. 42.
    Pesudovs K, Hazel CA, Doran RML, Elliott DB (2004) The usefulness of Vistech and FACT contrast sensitivity charts for cataract and refractive surgery outcomes resarch. Br J Ophthalmol 88:11–16PubMedCrossRefGoogle Scholar
  43. 43.
    Scharwey K, Krzizok T, Herfurth M (1998) Night driving capacity of ophthalmologically healthy persons of various ages. Ophthalmologe 95:555–558PubMedCrossRefGoogle Scholar
  44. 44.
    Sloane ME, Owsley C, Alvarez SL (1988) Aging, senile miosis and spatial contrast sensitivity at low luminance. Vision Research 28:1235–46PGoogle Scholar
  45. 45.
    Terzi E, Bühren J, Wesemann W, Kohnen T (2005) [Frankfurt-Freiburg Contrast and Acuity Test System (FF-CATS). A new test to determine contrast sensitivity under variable ambient and glare luminance levels]. Ophthalmolge 102:507–513CrossRefGoogle Scholar
  46. 46.
    Thayaparan K, Crossland MD, Rubin GS (2006) Clinical assessment of two novel contrast sensitivity charts. Br J Ophthalmol. DOI 17166891
  47. 47.
    van den Berg TJTP (1986) Importance of pathological intraocular scatter for visual disability. Doc Ophthalmol 61:327–333PubMedCrossRefGoogle Scholar
  48. 48.
    van Rijn LJ, Nischler C, Gamer D, Franssen L, de Wit G, Kaper R, Vonhoff D, Grabner G, Wilhelm H, Volker-Dieben HJ, van den Berg TJ (2005) Measurement of stray light and glare: comparison of Nyktotest, Mesotest, stray light meter, and computer implemented stray light meter. Br J Ophthalmol 89:345–351PubMedCrossRefGoogle Scholar
  49. 49.
    Wesner MF, Tan J (2006) Contrast sensitivity in seasonal and nonseasonal depression. J Affect Disord 95:19–28PubMedCrossRefGoogle Scholar
  50. 50.
    Williams DR (2002) What adaptive optics can do for the eye. Rev Refract Surg 3:14–20Google Scholar
  51. 51.
    Yamane N, Miyata K, Samejima T et al (2004) Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Invest Ophthalmol Vis Sci 45:3986–3990PubMedCrossRefGoogle Scholar
  52. 52.
    Yoon G, Jeong TE, Cox IG, Williams DR (2004) Vision improvement by correcting higher-order aberrations with phase plate in normal eyes. J Refract Surg 20:523–527Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bettina Hohberger
    • 1
  • Robert Laemmer
    • 1
  • Werner Adler
    • 2
  • Anselm G. M. Juenemann
    • 1
  • Folkert K. Horn
    • 1
    • 3
  1. 1.Department of Ophthalmology and Eye HospitalUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Department of Medical Informatics, Biometry and EpidemiologyUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Universitäts-AugenklinikErlangenGermany

Personalised recommendations