Effect of oral CDP-choline on visual function in young amblyopic patients

  • Michela Fresina
  • Anna Dickmann
  • Annabella Salerni
  • Fabio De GregorioEmail author
  • Emilio C. Campos



The purpose of the study was to evaluate the effect on visual function of orally administered CDP-choline in addition to patching for the treatment of amblyopia in children.


This was an open label parallel group study comparing patching plus oral CDP-choline with patching alone. Sixty-one participants (aged between 5 and 10 years) suffering from anisometropic or strabismic amblyopia were divided at random into two groups: Group A, 800 or 1,200 mg (according to the body weight) of orally administered CDP-choline and 2-h patching a day; Group B, 2-h patching a day. Both groups were treated for 30 consecutive days. A follow-up visit was set 60 days after the treatment was discontinued. The main outcome measure was the change in visual acuity of amblyopic eyes as measured by Snellen’s E charts. The secondary outcome measures were changes in the visual acuity of amblyopic eye as measured by isolated letters (Snellen’s E) and changes in the contrast sensitivity of amblyopic eyes.


The addition of CDP-choline to patching therapy was not found to be more effective than patching alone after 30-day treatment. The present results showed that adding CDP-choline to patching stabilised the effects obtained during the treatment period. In fact, whereas the participants treated only with patching showed a decrease in visual acuity at 90 days, these receiving CDP-choline and patching combined appeared to maintain the results obtained (two-way ANOVA: P = 0.0042). Similar results were obtained when measuring visual acuity by isolated Snellen’s E letters.


In amblyopic patients, CDP-choline combined with patching contributes to obtaining more stable effects than patching alone.


CDP-choline Citicoline Amblyopia Medical treatment Visual acuity 



The study was in part financially supported by Tubilux Pharma S.p.A.


  1. 1.
    Snowdon SK, Stewart-Brown SL (1997) Preschool vision screening. Health Technol Assess 1:1–85Google Scholar
  2. 2.
    Newman DK, East MM (2000) Prevalence of amblyopia among defaulters of preschool vision screening. Ophthalmic Epidemiol 7(1):67–71PubMedCrossRefGoogle Scholar
  3. 3.
    Adams DL (2005) Normal and abnormal visual development. In: Taylor D, Hoyt CS (eds) Pediatric ophthalmology and strabismus. Elsevier Saunders, Edinburgh, pp 9–22Google Scholar
  4. 4.
    Repka MX (2005) Amblyopia management. In: Taylor D, Hoyt CS (eds) Pediatric ophthalmology and strabismus. Elsevier Saunders, Edinburgh, pp 862–868Google Scholar
  5. 5.
    Secades JJ (2001) CDP-choline update and review of its pharmacology and clinical use. Methods Find Exp Clin Pharmacol 23 [Suppl B]:1–53Google Scholar
  6. 6.
    Secades J, Frontera G (1995) CDP-choline: pharmacological and clinical review. Methods Find Exp Clin Pharmacol 17 [Suppl B]:1–54PubMedGoogle Scholar
  7. 7.
    Agnoli A, Ruggieri S, Denaro A, Bruno G (1982) New strategies in the management of Parkinson’s disease. A biological approach using a phospholipid precursor (CDP-choline). Neuropsychobiology 8:289–296PubMedGoogle Scholar
  8. 8.
    Eberhardt R, Birbamer G, Gerstenbrand F, Rainer E, Traegner H (1990) Citicoline in the treatment of Parkinson’s disease. Clin Ther 12:489–495PubMedGoogle Scholar
  9. 9.
    Davalos A, Castillo J, Alvarez-Sabin JA et al (2002) Oral citicoline in acute ischemic stroke. An individual patient data pooling analysis of clinical trials. Stroke 33:2850–2857PubMedCrossRefGoogle Scholar
  10. 10.
    Martinez-Villa E, Sieria PI (2001) Current status and perspectives of neuroprotection in ischemic stroke treatment. Cerebrovasc Dis 11 [Suppl 1]:60–70CrossRefGoogle Scholar
  11. 11.
    Pecori Giraldi J, Virno M, Covelli G, Grechi G, De Gregorio F (1989) Therapeutic value of citicoline in the treatment of glaucoma (computerized and automated perimetric investigation). Int Ophthalmol 13:109–112PubMedCrossRefGoogle Scholar
  12. 12.
    Covelli GP, De Gregorio F, Grechi G, Pecori Giraldi J (1989) Efficacia della citicolina nei difetti perimetrici a settore. Boll Ocul 68 [Suppl 4]:353–361Google Scholar
  13. 13.
    Virno M, Pecori Giraldi J, Liguori A, De Gregorio F (2000) The protective effect of citicoline on the progression of the perimetric defects in glaucomatous patients (perimetric study with a 10-year follow-up). Acta Ophthalmol Scand 78 [Suppl]:56–57Google Scholar
  14. 14.
    Brogliatti B, Rolle T, Cantatore A, Bianco M (1991) Citicolina versus gangliosidi versus GM1: effetti sulla sensibilità retinica centrale in pazienti glaucomatosi. Boll Ocul 70 [Suppl 2]:1–8Google Scholar
  15. 15.
    Parisi V, Manni G, Colacino G, Bucci MG (1999) Cytidine-5′-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology 106(6):1126–1134PubMedCrossRefGoogle Scholar
  16. 16.
    McMurray WC, Magee WI (1972) Phospholipid metabolism. Ann Rev Biochem 41:129–161PubMedCrossRefGoogle Scholar
  17. 17.
    Farooqui AA, Horrocks LA, Farooqui T (2000) Glycerophospholipids in brain: their metabolism incorporation to membranes, function, and involvement in neurological disorders. Chem Phys Lipids 106:1–29PubMedCrossRefGoogle Scholar
  18. 18.
    Cohadon F, Rigoulet M, Guerin B, Vendendriessche M (1979) Edeme cerebral vasogenique. Alterations des ATPases membranaires. Restauration par un precurseur des phospholipides. Nouv Presse Med 8:1589–1591PubMedGoogle Scholar
  19. 19.
    Goto Y, Okamoto S, Yonekawa Y et al (1988) Degradation of phospholipid molecular species during experimental cerebral ischemia in rats. Stroke 19:728–735PubMedGoogle Scholar
  20. 20.
    Hirashima Y, Moto A, Endo S, Takaku A (1989) Activities of enzymes metabolizing phospholipids in rat cerebral ischemia. Mol Chem Neuropathol 10:87–100PubMedCrossRefGoogle Scholar
  21. 21.
    Cohen MM (1973) Biochemistry of cerebral anoxia, hypoxia and ischemia. Monogr Neural Sci 1:1–49PubMedGoogle Scholar
  22. 22.
    Mykita S, Golly F, Dreyfus H, Freysz L, Massarelli R (1986) Effect of CDP-choline on hypocapnic neurons in culture. J Neurochem 47:223–231PubMedCrossRefGoogle Scholar
  23. 23.
    Schäbitz WR, Weber J, Takano K, Sandage BW, Locke KW, Fisher M (1996) The effect of prolonged treatment with citicoline in temporary experimental focal ischemia. J Neurol Sci 183:21–25CrossRefGoogle Scholar
  24. 24.
    Bladergroen BA, Bussiere M, Klein W et al (1999) Inhibition of phosphatidylcholine and phosphatidylethanolamine biosynthesis in rat-2 fibroblasts by cell-permeable ceramides. Eur J Biochem 264:152–160PubMedCrossRefGoogle Scholar
  25. 25.
    Rao AM, Hatcher JF, Dempsey RJ (2001) Does CDP-choline modulate phospholipase activities after transient forebrain ischemia? Brain Res 893:268–272PubMedCrossRefGoogle Scholar
  26. 26.
    Onal MZ, Tatlisumak T, Locke KW, Sandage BW, Fisher M (1997) Synergistic effect of citicoline and MK-801 in temporary experimental focal ischemia in rats. Stroke 28:1060–1065PubMedGoogle Scholar
  27. 27.
    Agut J, Coviella IL, Wurtman RJ (1984) Cytidine(5′)diphosphocholine enhances the ability of haloperidol to increase dopamine metabolites in the striatum of the rat and to diminish stereotyped behavior induced by apomorphine. Neuropharmacology 23:1403–1406PubMedCrossRefGoogle Scholar
  28. 28.
    Witkovsky P, Dearry A (1991) Functional roles of dopamine in the vertebrate retina. Prog Retin Res 11:247–292CrossRefGoogle Scholar
  29. 29.
    Simon A, Nguyen-Legros J (1995) Are there dopaminergic ganglion cells in the mammalian retina? Neurochem Int 27:279–283PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen-Legros J, Harnois C, DiPaolo T, Simon A (1993) The retinal dopamine system in Parkinson’s disease. Clin Vis Sci 8:1–12Google Scholar
  31. 31.
    Gottlob I, Schneider E, Heider W, Skrandies W (1987) Alteration of visual evoked potentials and electroretinograms in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 66:349–357PubMedCrossRefGoogle Scholar
  32. 32.
    Antal A, Bandini F, Keri S, Bodis-Wollner I (1998) Visuo-cognitive dysfunctions in Parkinson’s disease. Clin Neurosci 5:147–152PubMedGoogle Scholar
  33. 33.
    Rejdak R, Toczoowski J, Solski J, Duma D, Grieb P (2002) Citicoline treatment increases retinal dopamine content in rabbits. Ophthalmic Res 34:146–149PubMedCrossRefGoogle Scholar
  34. 34.
    Gottlob I, Charlier J, Reinecke RD (1992) Visual acuities and scotomas after one week levodopa administration in human amblyopia. Invest Ophthalmol Vis Sci 33(9):2722–2728PubMedGoogle Scholar
  35. 35.
    Leguire LE, Rogers GL, Wilson PD et al (1998) Occlusion and levodopa-carbidopa treatment for childhood amblyopia. J AAPOS 2:257–264PubMedCrossRefGoogle Scholar
  36. 36.
    Campos EC, Bolzani R, Schiavi C, Baldi A, Porciatti V (1997) Cytidin-5′-diphosphocholine enhances the effect of part-time occlusion in amblyopia. Doc Ophthalmol 93:247–263CrossRefGoogle Scholar
  37. 37.
    Campos EC, Schiavi C, Benedetti P, Bolzani R, Porciatti V (1995) Effect of citicoline on visual acuity in amblyopia: preliminary results. Graefes Arch Clin Exp Ophthalmol 233:307–312PubMedGoogle Scholar
  38. 38.
    Campos EC (1997) Future direction in the treatment of amblyopia. Lancet 349:1190PubMedCrossRefGoogle Scholar
  39. 39.
    Porciatti V, Schiavi C, Benedetti P, Baldi A, Campos EC (1998) Cytidine-5′-diphosphocholine improves visual acuity, contrast sensitivity and visual-evoked potentials of amblyopic subjects. Curr Eye Res 17:141–148PubMedCrossRefGoogle Scholar
  40. 40.
    Becker R, Graf M (2006) Landolt C and Snellen E acuity: differences in strabismus amblyopia? Klin Monatsbl Augenheilkd 223:24–28PubMedCrossRefGoogle Scholar
  41. 41.
    Galletti P, De Rosa M, Nappi MA, Pontoni G, Del Piano L, Salluzzo A, Zappia V (1985) Transport and metabolism of double-labelled CDP-choline in mammalian tissues. Biochem Pharmacol 34:4121–4130PubMedCrossRefGoogle Scholar
  42. 42.
    Lopez-Coviella I, Agut J, Savci V, Ortiz JA, Wurtman RJ (1995) Evidence that 5′-cytidinediphosphocholine can affect brain phospholipid composition by increasing choline and cytidine plasma level. J Neurochem 65:889–894PubMedCrossRefGoogle Scholar
  43. 43.
    Agut J, Font E, Sacristan A, Ortiz JA (1983) Bioavailability of methyl14C CDP-choline by oral route. Arzneimittelforschung 33(II):1045–1047PubMedGoogle Scholar
  44. 44.
    Lopez-Coviella I, Agut J, Von Borstel R, Wurtman RJ (1987) Metabolism of cytidine (5′)-diphosphocholine (CDP-choline) following oral and intravenous administration to the human and the rat. Neurochem Int 11:293–297CrossRefGoogle Scholar
  45. 45.
    Grau T, Romero A, Sacristan A, Ortiz JA (1983) CDP-choline: acute toxicity study. Arzneimittelforschung 33(II):1033–1034PubMedGoogle Scholar
  46. 46.
    Grau T, Romero A, Sacristan A, Ortiz JA (1983) Study of subacute toxicity of CDP-choline after 30 days of oral administration. Arzneimittelforschung 33(II):1035–1038PubMedGoogle Scholar
  47. 47.
    Grau T, Romero A, Sacristan A, Ortiz JA (1983) CDP-choline: 6-month study toxicity on dogs. Arzneimittelforschung 33(II):1038–1042PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michela Fresina
    • 1
  • Anna Dickmann
    • 2
  • Annabella Salerni
    • 2
  • Fabio De Gregorio
    • 3
    Email author
  • Emilio C. Campos
    • 1
  1. 1.Ophthalmology ServiceUniversity of BolognaBolognaItaly
  2. 2.Eye ClinicCatholic UniversityRomeItaly
  3. 3.R&D DepartmentTubilux PharmaPomeziaItaly

Personalised recommendations