Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT)

  • Janusz Michalewski
  • Zofia Michalewska
  • Sławomir Cisiecki
  • Jerzy Nawrocki
Clinical Investigation

Abstract

Background

Preretinal membrane formation is a frequently diagnosed disease in ophthalmology. Its pathogenesis is unclear. Optical coherence tomography is an important diagnostic tool in patients with epiretinal membranes. In our study we use high-speed and high-resolution spectral OCT. Our goal was to present different forms of ERM and to analyze the influence of some morphological changes on visual acuity.

Methods

We evaluated 44 cases of preretinal fibrosis. Patients were divided into two groups depending on macula morphology. High-resolution and 3D SOCT scans were acquired from all patients and analyzed. Maximum retinal thickness and retinal thickness in the fovea were measured. Type of ERM, presence of retinal cysts and photoreceptor defects were recorded. We analyzed the influence of those data on visual acuity.

Results

Globally adherent membranes were the most frequent membrane architecture type in each group. The mean visual acuity in both groups did not significantly differ. Presence of retinal cystic formation had no influence on visual acuity. A statistically significant correlation was observed between central retinal thickness and VA in Group 2 (A = −0.488; p = 0.006). Photoreceptor defect was observed in 4 patients in group 1 and 11 in group 2. Patients with photoreceptor defect had significantly lower visual acuity (P = 0.04 for Group 1 and P = 0.002 for Group 2).

Conclusions

SOCT pictures of eyes with ERM are diverse. Thanks to high-resolution and 3D scanning protocols, more information can be gathered. Morphological changes in the retina, such as oedema with cystic spaces, lamellar macular holes, macular pseudoholes and photoreceptor defects, were present in patients with ERM. Estimation of those changes may be an important prognostic factor in cases of epiretinal membranes.

Keywords

Spectral OCT Epiretinal membranes Lamellar macular hole Vitreoretinal interface pathology 

References

  1. 1.
    Iwanoff A (1865) Beitrage zur normalen und pathologischen Anatomie des Auges. Graefes Arch Clin Exp Ophthalmol 11:135–170Google Scholar
  2. 2.
    Roth AM, Foos RY (1971) Surface wrinkling retinopathy in eyes enucleated at autopsy. Trans Am Acad Ophthalmol Otolaryngol 75:1047–1059PubMedGoogle Scholar
  3. 3.
    McCarty DJ, Mukesh BN, Chikani V, Wang JJ, Mitchell P, Taylor HR, McCarty CA (2005) Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Opthalmol 140(2):288–294Google Scholar
  4. 4.
    Fraser-Bell S, Ying-Lai M, Klein R, Varma R (2004) Prevalence and associations of epiretinal membranes in Latinos: the Los Angeles Latino Eye Study. Invest Ophthalmolol Vis Sci 45(6):1732–1736CrossRefGoogle Scholar
  5. 5.
    Maumenee AE (1967) Further advances in the study of the Macula. Archives of Ophthalmology 78(2):151–165PubMedGoogle Scholar
  6. 6.
    Trese MT, Chandler DB, Machemer R (1983) Macular pucker. II. Ultrastructure. Graefes Arch Clin Ex Ophtalmolol 221(1):16–26CrossRefGoogle Scholar
  7. 7.
    Smiddy WE, Maquire AM, Green WR, Michels RG, de la Cruz Z, Enqer C, Jaeger M, Rice TA (1989) Idiopathic epiretinal membranes: ultrastructural characteristics and clinicopathologic correlation. Ophthalmology 96:811–821PubMedGoogle Scholar
  8. 8.
    Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28PubMedGoogle Scholar
  9. 9.
    Harada C, Harada T, Mitamura Y, Quach HM, Ohtsuka K, Kotake S, Ohno S, Wada K, Takeuchi S, Tanaka K (2004) Diverse NF-kB expression in epiretinal membranes after human diabetic retinopathy and proliferative retinopathy. Molecular Vision 10:31–36PubMedGoogle Scholar
  10. 10.
    Harada C, Mitamura Y, Harada T (2006) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25(2):149–164PubMedCrossRefGoogle Scholar
  11. 11.
    Wise GN (1975) Clinical features of idiopathic preretinal macular fibrosis. Am J Ophthalmol 79:349–357PubMedGoogle Scholar
  12. 12.
    Suzuki T, Terasaki H, Niwa T, Mori M, Kondo M, Miake Y (2003) Optical coherence tomography and focal macular electroretinogram in eyes with epiretinal membrane and macular pseudohole. Am J Ophthalmolol 136(1):62–67CrossRefGoogle Scholar
  13. 13.
    Tanikawa A, Horigouchi M, Kondo M, Suzuki S, Terasaki H, Miyake Y (1999) Abnormal focal macular electroretinograms in eyes with idiopathic epimacular membrane. Am J Ophthalmolol 127:559–564CrossRefGoogle Scholar
  14. 14.
    Kadonosono K, Itoh N, Ohno S (1999) Perifoveal microcirculation in eyes with epiretinal membranes. Br J Opthalmolol 83:1329–1331CrossRefGoogle Scholar
  15. 15.
    Niwa T, Terasaki H, Kondo M, Piao CH, Suzuki T, Miyake Y (2003) Function and morphology of macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmolol Vis Sci 44(4):1652–1656CrossRefGoogle Scholar
  16. 16.
    Pesin SR, Olk RJ, Grand MG, Boniuk I, Arribas NP, Thomas MA, Williams DF, Burgess D (1991) Vitrectomy for premacular fibroplasia. Prognostic factors, long term follow-up, and time course of visual improvement. Ophthalmology 98:1109–1114PubMedGoogle Scholar
  17. 17.
    Trese MT, Chandler DB, Machemer R (1983) Macular pucker I. Prognostic criteria. Graefes Arch Klin Exp Ophthalmol 221:12–15CrossRefGoogle Scholar
  18. 18.
    Massin P, Allouch C, Haouchine B, Metge F, Paques M, Tangui L, Erginay A, Gaudric A (2000) Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery. Am J Opthalmolol 130(6):732–739CrossRefGoogle Scholar
  19. 19.
    Park DW, Dugel PU, Garda J, Sipperley JO, Thach A, Sneed SR, Blaisdell J (2003) Macular pucker removal with and without internal limiting membrane peeling: pilot study. Ophthalmology 110(1):62–64PubMedCrossRefGoogle Scholar
  20. 20.
    Kwok AKh, Lai TY, Yuen KS (2005) Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin Experiment Opthalmolol 33(4):379–385CrossRefGoogle Scholar
  21. 21.
    Niwa T, Terasaki H, Kondo M, Piao CH, Suzuki T, Miyake Y (2003) Function and morphology of the macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmolol Vis Sci 44:1652–1656CrossRefGoogle Scholar
  22. 22.
    Drexler W, Morgner U, Ghanta RK, Schuman JS, Kartner FX, Fujimoto JG (2001) Ultrahigh resolution ophthalmologic optical coherence tomography. Nat Med 7:502–507PubMedCrossRefGoogle Scholar
  23. 23.
    Sander B, Larsen M, Thrane L, Hougaard JL, Jorgensen TM (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 89:207–212PubMedCrossRefGoogle Scholar
  24. 24.
    Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I, Drexler W, Wollstein G, Ishikawa H, Duker JS (2005) Comparison of ultrahigh-and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112(11):1922–1935PubMedCrossRefGoogle Scholar
  25. 25.
    Witkin AJ, Ko TH, Fujimoto JG, Schuman JS, Baumal CR, Rogers AH, Reichel E, Duker JS (2006) Redefining lamellar holes and the vitreomacular interface: an ultrahigh resolution optical coherence tomography study. Ophthalmology 113(3):388–397PubMedCrossRefGoogle Scholar
  26. 26.
    Wojtkowski M, Leitgeb R, Kowalczyk A (2002) In vivo human retina imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463PubMedCrossRefGoogle Scholar
  27. 27.
    Wojtkowski M, Bajraszewski T, Gorczynska I, Targowski P, Kowalczyk A, Wasilewski W, Radzewicz C (2004) Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 138(3):412–419PubMedCrossRefGoogle Scholar
  28. 28.
    Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG (2006) High-definifion and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113(11):2054–2065PubMedCrossRefGoogle Scholar
  29. 29.
    Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF (2003) Enhanced visualization of macular pathology with the use of ultrahigh resolution optical coherence tomography. Arch Ophthalmolol 121:695–706CrossRefGoogle Scholar
  30. 30.
    Haouchine B, Massin P, Tadayoni R, Erignay A, Gaudric A (2004) Diagnosis of macular pseudoholes and lamellar macular holes by use of optical coherence tomography. Am J Opthalmolol 138:732–739CrossRefGoogle Scholar
  31. 31.
    Wilkins JF, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, Schuman JS, Swanson EA, Fujimoto JG (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103(12):2142–2151PubMedGoogle Scholar
  32. 32.
    Mor K, Gehlbah PL, Sano A, Deguchi T, Yoneya S (2004) Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 24(1):57–62CrossRefGoogle Scholar
  33. 33.
    Liu X, Ling Y, Huang J, Zheng X (2002) Optic coherence tomography of idiopatic macular epiretinal membranes. Yan Ke Xue Bao 18(1):14–19PubMedGoogle Scholar
  34. 34.
    Alam S, Zawadzki RJ, Choi S, Gerth C, Park SS, Morse L, Werner JS (2006) Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging. Ophthalmology 113:1425–1431PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Janusz Michalewski
    • 1
  • Zofia Michalewska
    • 1
  • Sławomir Cisiecki
    • 1
  • Jerzy Nawrocki
    • 1
  1. 1.The “Jasne Blonia” Eye ClinicLodzPoland

Personalised recommendations