Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT)



Preretinal membrane formation is a frequently diagnosed disease in ophthalmology. Its pathogenesis is unclear. Optical coherence tomography is an important diagnostic tool in patients with epiretinal membranes. In our study we use high-speed and high-resolution spectral OCT. Our goal was to present different forms of ERM and to analyze the influence of some morphological changes on visual acuity.


We evaluated 44 cases of preretinal fibrosis. Patients were divided into two groups depending on macula morphology. High-resolution and 3D SOCT scans were acquired from all patients and analyzed. Maximum retinal thickness and retinal thickness in the fovea were measured. Type of ERM, presence of retinal cysts and photoreceptor defects were recorded. We analyzed the influence of those data on visual acuity.


Globally adherent membranes were the most frequent membrane architecture type in each group. The mean visual acuity in both groups did not significantly differ. Presence of retinal cystic formation had no influence on visual acuity. A statistically significant correlation was observed between central retinal thickness and VA in Group 2 (A = −0.488; p = 0.006). Photoreceptor defect was observed in 4 patients in group 1 and 11 in group 2. Patients with photoreceptor defect had significantly lower visual acuity (P = 0.04 for Group 1 and P = 0.002 for Group 2).


SOCT pictures of eyes with ERM are diverse. Thanks to high-resolution and 3D scanning protocols, more information can be gathered. Morphological changes in the retina, such as oedema with cystic spaces, lamellar macular holes, macular pseudoholes and photoreceptor defects, were present in patients with ERM. Estimation of those changes may be an important prognostic factor in cases of epiretinal membranes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Iwanoff A (1865) Beitrage zur normalen und pathologischen Anatomie des Auges. Graefes Arch Clin Exp Ophthalmol 11:135–170

  2. 2.

    Roth AM, Foos RY (1971) Surface wrinkling retinopathy in eyes enucleated at autopsy. Trans Am Acad Ophthalmol Otolaryngol 75:1047–1059

  3. 3.

    McCarty DJ, Mukesh BN, Chikani V, Wang JJ, Mitchell P, Taylor HR, McCarty CA (2005) Prevalence and associations of epiretinal membranes in the visual impairment project. Am J Opthalmol 140(2):288–294

  4. 4.

    Fraser-Bell S, Ying-Lai M, Klein R, Varma R (2004) Prevalence and associations of epiretinal membranes in Latinos: the Los Angeles Latino Eye Study. Invest Ophthalmolol Vis Sci 45(6):1732–1736

  5. 5.

    Maumenee AE (1967) Further advances in the study of the Macula. Archives of Ophthalmology 78(2):151–165

  6. 6.

    Trese MT, Chandler DB, Machemer R (1983) Macular pucker. II. Ultrastructure. Graefes Arch Clin Ex Ophtalmolol 221(1):16–26

  7. 7.

    Smiddy WE, Maquire AM, Green WR, Michels RG, de la Cruz Z, Enqer C, Jaeger M, Rice TA (1989) Idiopathic epiretinal membranes: ultrastructural characteristics and clinicopathologic correlation. Ophthalmology 96:811–821

  8. 8.

    Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28

  9. 9.

    Harada C, Harada T, Mitamura Y, Quach HM, Ohtsuka K, Kotake S, Ohno S, Wada K, Takeuchi S, Tanaka K (2004) Diverse NF-kB expression in epiretinal membranes after human diabetic retinopathy and proliferative retinopathy. Molecular Vision 10:31–36

  10. 10.

    Harada C, Mitamura Y, Harada T (2006) The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res 25(2):149–164

  11. 11.

    Wise GN (1975) Clinical features of idiopathic preretinal macular fibrosis. Am J Ophthalmol 79:349–357

  12. 12.

    Suzuki T, Terasaki H, Niwa T, Mori M, Kondo M, Miake Y (2003) Optical coherence tomography and focal macular electroretinogram in eyes with epiretinal membrane and macular pseudohole. Am J Ophthalmolol 136(1):62–67

  13. 13.

    Tanikawa A, Horigouchi M, Kondo M, Suzuki S, Terasaki H, Miyake Y (1999) Abnormal focal macular electroretinograms in eyes with idiopathic epimacular membrane. Am J Ophthalmolol 127:559–564

  14. 14.

    Kadonosono K, Itoh N, Ohno S (1999) Perifoveal microcirculation in eyes with epiretinal membranes. Br J Opthalmolol 83:1329–1331

  15. 15.

    Niwa T, Terasaki H, Kondo M, Piao CH, Suzuki T, Miyake Y (2003) Function and morphology of macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmolol Vis Sci 44(4):1652–1656

  16. 16.

    Pesin SR, Olk RJ, Grand MG, Boniuk I, Arribas NP, Thomas MA, Williams DF, Burgess D (1991) Vitrectomy for premacular fibroplasia. Prognostic factors, long term follow-up, and time course of visual improvement. Ophthalmology 98:1109–1114

  17. 17.

    Trese MT, Chandler DB, Machemer R (1983) Macular pucker I. Prognostic criteria. Graefes Arch Klin Exp Ophthalmol 221:12–15

  18. 18.

    Massin P, Allouch C, Haouchine B, Metge F, Paques M, Tangui L, Erginay A, Gaudric A (2000) Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery. Am J Opthalmolol 130(6):732–739

  19. 19.

    Park DW, Dugel PU, Garda J, Sipperley JO, Thach A, Sneed SR, Blaisdell J (2003) Macular pucker removal with and without internal limiting membrane peeling: pilot study. Ophthalmology 110(1):62–64

  20. 20.

    Kwok AKh, Lai TY, Yuen KS (2005) Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin Experiment Opthalmolol 33(4):379–385

  21. 21.

    Niwa T, Terasaki H, Kondo M, Piao CH, Suzuki T, Miyake Y (2003) Function and morphology of the macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmolol Vis Sci 44:1652–1656

  22. 22.

    Drexler W, Morgner U, Ghanta RK, Schuman JS, Kartner FX, Fujimoto JG (2001) Ultrahigh resolution ophthalmologic optical coherence tomography. Nat Med 7:502–507

  23. 23.

    Sander B, Larsen M, Thrane L, Hougaard JL, Jorgensen TM (2005) Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 89:207–212

  24. 24.

    Ko TH, Fujimoto JG, Schuman JS, Paunescu LA, Kowalevicz AM, Hartl I, Drexler W, Wollstein G, Ishikawa H, Duker JS (2005) Comparison of ultrahigh-and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 112(11):1922–1935

  25. 25.

    Witkin AJ, Ko TH, Fujimoto JG, Schuman JS, Baumal CR, Rogers AH, Reichel E, Duker JS (2006) Redefining lamellar holes and the vitreomacular interface: an ultrahigh resolution optical coherence tomography study. Ophthalmology 113(3):388–397

  26. 26.

    Wojtkowski M, Leitgeb R, Kowalczyk A (2002) In vivo human retina imaging by Fourier domain optical coherence tomography. J Biomed Opt 7:457–463

  27. 27.

    Wojtkowski M, Bajraszewski T, Gorczynska I, Targowski P, Kowalczyk A, Wasilewski W, Radzewicz C (2004) Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 138(3):412–419

  28. 28.

    Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG (2006) High-definifion and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113(11):2054–2065

  29. 29.

    Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF (2003) Enhanced visualization of macular pathology with the use of ultrahigh resolution optical coherence tomography. Arch Ophthalmolol 121:695–706

  30. 30.

    Haouchine B, Massin P, Tadayoni R, Erignay A, Gaudric A (2004) Diagnosis of macular pseudoholes and lamellar macular holes by use of optical coherence tomography. Am J Opthalmolol 138:732–739

  31. 31.

    Wilkins JF, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, Schuman JS, Swanson EA, Fujimoto JG (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103(12):2142–2151

  32. 32.

    Mor K, Gehlbah PL, Sano A, Deguchi T, Yoneya S (2004) Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 24(1):57–62

  33. 33.

    Liu X, Ling Y, Huang J, Zheng X (2002) Optic coherence tomography of idiopatic macular epiretinal membranes. Yan Ke Xue Bao 18(1):14–19

  34. 34.

    Alam S, Zawadzki RJ, Choi S, Gerth C, Park SS, Morse L, Werner JS (2006) Clinical application of rapid serial Fourier-domain optical coherence tomography for macular imaging. Ophthalmology 113:1425–1431

Download references

Author information

Correspondence to Janusz Michalewski.

Additional information

The authors do not have any financial interest in the reported research.

The authors have a full control of all the primary data and agree to allow Graefes Archive for Clinical and Experimental Ophthalmology to review them, if requested.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michalewski, J., Michalewska, Z., Cisiecki, S. et al. Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol 245, 1623–1631 (2007).

Download citation


  • Spectral OCT
  • Epiretinal membranes
  • Lamellar macular hole
  • Vitreoretinal interface pathology