Advertisement

Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa

  • Takashi FujikadoEmail author
  • Takeshi Morimoto
  • Hiroyuki Kanda
  • Shunji Kusaka
  • Kazuaki Nakauchi
  • Motoki Ozawa
  • Kenji Matsushita
  • Hirokazu Sakaguchi
  • Yasushi Ikuno
  • Motohiro Kamei
  • Yasuo Tano
Clinical Investigation

Abstract

Background

To determine the efficient parameters to evoke electrical phosphenes is essential for the development of a retinal prosthesis. We studied the efficient parameters in normal subjects and investigated if suprachoroidal-transretinal stimulation (STS) is effective in patients with advanced retinitis pigmentosa (RP) using these efficient parameters.

Methods

The amplitude of pupillary reflex (PR) evoked by transcorneal electrical stimulation (TcES) was determined at different frequencies in eight normal subjects. The relationship between localized phosphenes elicited by transscleral electrical stimulation (TsES) and the pulse parameters was also examined in six normal subjects. The phosphenes evoked by STS were examined in two patients with RP with bare light perception. Biphasic pulses (cathodic first, duration: 0.5 or 1.0 ms, frequency: 20 Hz) were applied through selected channel(s). The size and shape of the phosphenes perceived by the patients were recorded.

Results

The maximum PR was evoked by TcES with a frequency of 20 Hz. The brightest phosphene was elicited by TsES with a pulse train of more than 10 pulses, duration of 0.5–1.0 ms and a frequency of 20 to 50 Hz. In RP patients, localized phosphenes were elicited with a current of 0.3–0.5 mA (0.5 ms) in patient 1 and 0.4 mA (1.0 ms) in patient 2. Two isolated or dumbbell-shaped phosphenes were perceived when the stimulus was delivered through two adjacent channels.

Conclusion

Biphasic pulse trains (≥10 pulses) with a duration of 0.5–1.0 ms and a frequency of 20–50 Hz were efficient for evoking phosphenes by localized extraocular stimulation in normal subjects. With these parameters, STS is a feasible method to use with a retinal prosthesis even in advanced stages of RPs.

Keywords

Artificial retina Retinitis pigmentosa Phosphene Pupillary reflex Suprachoroidal-transretinal stimulation 

Notes

Acknowledgements

The authors thank Yozo Miyake, Satoshi Suzuki, Mineo Kondo Yutaka Fukuda, Hajime Sawai and Tomomitsu Miyoshi for advice and discussion.

Commercial interest

Hiroyuki Kanda and Motoki Ozawa are employees of the Nidek Company.

Financial support

This study was supported by Health Sciences Research Grants (H16-sensory-001) from the Ministry of Health, Labor and Welfare, Japan.

References

  1. 1.
    Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16PubMedCrossRefGoogle Scholar
  2. 2.
    Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469PubMedCrossRefGoogle Scholar
  3. 3.
    Chowdhury V, Morley JW, Coroneo AM (2005) Stimulation of the retina with a multiekectrode extraocular visual prosthesis. ANZ J Surg 75:679–704CrossRefGoogle Scholar
  4. 4.
    Hesse L, Schanze T, Wilms M, Eger M (2000) Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat. Graefe Arch Clin Exp Ophthalmol 238:840–845CrossRefGoogle Scholar
  5. 5.
    Humayun MS, Price M, de Juan E Jr et al (1999) Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 40:143–148PubMedGoogle Scholar
  6. 6.
    Humayun MS, de Juan E, Weiland JD, Dagnelie G, Katona S, Greenberg R, Suzuki S (1999) Pattern electrical stimulation of human retina. Vision Res 39:2569–2576PubMedCrossRefGoogle Scholar
  7. 7.
    Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581PubMedCrossRefGoogle Scholar
  8. 8.
    Jensen RJ, Rizzo JF 3rd, Ziv OR, Grumet A, Wyatt J (2003) Thresholds for activation of rabbit retinal ganglion cells with an ultrafine, extracellular microelectrode. Invest Ophthalmol Vis Sci 44:3533–3543PubMedCrossRefGoogle Scholar
  9. 9.
    Jensen RJ, Ziv OR, Rizzo JF 3rd (2005) Thresholds for activation of rabbit retinal ganglion cells with relatively large, extreacellular microelectrodes. Invest Ophthalmol Vis Sci 46:1486–1496PubMedCrossRefGoogle Scholar
  10. 10.
    Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological studies on the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS Rat. Invest Ophthalmol Vis Sci 45:560–566PubMedCrossRefGoogle Scholar
  11. 11.
    Kawasumi M (1981) Distribution of current intensities inside the electrically stimulated eye. Nippon Ganka Gakkai Zasshi 89:766–772Google Scholar
  12. 12.
    Leventhal AG, Rodieck RW, Dreher B (1981) Retinal ganglion cell classes in the old world monkey: morphology and central projections. Science 213:1139–1142PubMedCrossRefGoogle Scholar
  13. 13.
    Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, de Juan E Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081PubMedGoogle Scholar
  14. 14.
    Margalit E, Maia M, Weiland JD, Greenberg RJ, Fujii GY, Torres G, Piyathaisere DV, O’Hearn TM, Liu W, Lazzi G, Dagnelie G, Scribner DA, de Juan E Jr, Humayun MS (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47:335–356PubMedCrossRefGoogle Scholar
  15. 15.
    Marmor MF, Aguirre G, Arden G et al (1983) Retinitis pigmentosa: a symposium on terminology and methods of examination. Ophthalmology 90:126–131Google Scholar
  16. 16.
    Miyake Y, Yanagida K, Yagasaki K (1980) Clinical application of EER (electrically evoked response) (2) Analysis of EER in patients with dysfunctional rod or cone visual pathway. Nippon Ganka Gakkai Zasshi 84:502–509PubMedGoogle Scholar
  17. 17.
    Morimoto T, Fukui T, Matsushita K, Okawa Y, Shimojyo H, Kusaka S, Tano Y, Fujikado T (2006) Evaluation of residual retinal function by pupillary constrictions and phosphenes using transcorneal electrical stimulation in patients with retinal degeneration. Graefe Arch Clin Exp Ophthalmol 244:1283–1292CrossRefGoogle Scholar
  18. 18.
    Motokawa K, Ebe M (1952) Selective stimulation of color receptors with alternating currents. Science 25(115):92–94CrossRefGoogle Scholar
  19. 19.
    Nakauchi K, Fujikado T, Kanda H, Morimoto T, Choi JS, Ikuno Y, Sakaguchi H, Kamei M, Ohji M, Yagi T, Nishimura S, Sawai H, Fukuda Y, Tano Y (2005) Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefe Arch Clin Exp Ophthalmol 243:169–174CrossRefGoogle Scholar
  20. 20.
    Pagon RA (1988) Retinitis pigmentosa. Surv Ophthalmol 33:137–177PubMedCrossRefGoogle Scholar
  21. 21.
    Potts AM, Inoue J (1969) The electrically evoked response of the visual system (EER) II. Effect of adaptation and retinitis pigmentosa. Invest Ophthalmol 8:605–613PubMedGoogle Scholar
  22. 22.
    Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Method and perceptual threshold for short-term electrical stimulation of human retina with a microelectrode array. Invest Ophthalmol Vis Sci 44:5355–5361PubMedCrossRefGoogle Scholar
  23. 23.
    Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44:5362–5369PubMedCrossRefGoogle Scholar
  24. 24.
    Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol 115:511–515PubMedGoogle Scholar
  25. 25.
    Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E, Schwahn HN (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefe Arch Clin Exp Ophthalmol 239:961–967Google Scholar
  26. 26.
    Stone J, Fukuda Y (1974) Properties of cat’s retinal ganglion cells: a comparison of W-cells with X-cells and Y-cells. J Neurophysiol 37:722–748PubMedGoogle Scholar
  27. 27.
    Stone JL, Barlow WE, Humayun MS, de Juan E Jr, Milam AH (1992) Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol 110:1634–1639PubMedGoogle Scholar
  28. 28.
    Tanino T, Kato S, Kawasumi M (1981) Studies on electrically evoked pupillary reflex-Indirect reflex and its frequency characteristics. Jpn J Ophthalmol 25:423–429Google Scholar
  29. 29.
    Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186PubMedCrossRefGoogle Scholar
  30. 30.
    Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefe Arch Clin Exp Ophthalmol 238:315–318CrossRefGoogle Scholar
  31. 31.
    Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Takashi Fujikado
    • 1
    • 4
    Email author
  • Takeshi Morimoto
    • 1
  • Hiroyuki Kanda
    • 1
    • 2
  • Shunji Kusaka
    • 1
  • Kazuaki Nakauchi
    • 1
  • Motoki Ozawa
    • 2
  • Kenji Matsushita
    • 3
  • Hirokazu Sakaguchi
    • 3
  • Yasushi Ikuno
    • 3
  • Motohiro Kamei
    • 3
  • Yasuo Tano
    • 3
  1. 1.Department of Applied Visual ScienceOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Nidek Co.Gamagori, AichiJapan
  3. 3.Department of OphthalmologyOsaka University Graduate School of MedicineOsakaJapan
  4. 4.Department of Applied Visual ScienceOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations