Keratoepithelin in secondary corneal amyloidosis

  • D. SuesskindEmail author
  • C. Auw‐Haedrich
  • D. F. Schorderet
  • F. L. Munier
  • K. U. Loeffler
Laboratory investigation



Amyloid is found in several corneal dystrophies, including distinct lattice corneal dystrophies (LCD) and Avellino corneal dystrophy. Recently, point mutations in the transforming growth factor-beta-induced gene (TGFBI) encoding for keratoepithelin (KE) have been demonstrated in these corneal disease entities. We intended to investigate if KE was also a component of the rarely seen secondary corneal amyloid deposits.


Immunohistochemical staining with a polyclonal antibody against KE was performed on formalin-fixed paraffin-embedded tissue of five corneal buttons with secondary amyloid obtained after keratoplasty. Secondary amyloidosis was due to Fuchs´ endothelial dystrophy (FED) with bullous keratopathy and/or recurrent erosions in all cases. The diagnosis had been established by light microscopy using Congo red staining. Two cases of LCD type I served as positive controls and three corneas with FED and one with keratoconus without amyloid served as negative controls.


All corneas with secondary amyloidosis as well as LCD type I revealed positive staining in the respective amyloid deposits. KE was localized in the subepithelial pannus and in the anterior stroma in the corneas with secondary amyloidosis. In the specimens with LCD type I it was distributed in the amyloid deposits located in the anterior and mid-stroma. Staining for KE showed a granular appearance in all cases. The intensity of staining was variable among the specimens.


KE is found not only in primary amyloid deposits of hereditary corneal dystrophies, but also in secondary amyloidosis of the cornea of diverse ethiologies.


Amyloid Keratoepithelin Cornea Immunohistochemistry 


  1. 1.
    Akhtar S, Bron AJ, Hawksworth NR, Bonshek RE, Meek KM (2001) Ultrastructural morphology and expression of proteoglycans, βig–h3, tenascin–C, fibrillin–1, and fibronectin in bullous keratopathy. Br J Ophthalmol 85:720–731PubMedCrossRefGoogle Scholar
  2. 2.
    Clout NJ, Hohenester E (2003) A model of FAS1 domain 4 of the corneal protein gives a clearer view on corneal dystrophies. Mol Vis 9:440–448PubMedGoogle Scholar
  3. 3.
    de la Chapelle A, Tolvanen R, Boysen G, Santavy J, Bleeker–Wagemakers L, Maury CP, Kere J (1992) Gelsolin–derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet 2:157–160PubMedCrossRefGoogle Scholar
  4. 4.
    Escribano J, Hernando N, Ghosh S, Crabb J, Coca–Prados M (1994) cDNA from human ocular ciliary epithelium homologous to beta ig–h3 is preferentially expressed as an extracellular protein in the corneal epithelium. J Cell Physiol 160:511–521PubMedCrossRefGoogle Scholar
  5. 5.
    Hiltunen T, Kiuru S, Hongell V, Helio T, Palo J, Peltonen L (1991) Finnish type of familial amyloidosis: cosegregation of Asp187–Asn mutation of gelsolin with the disease in three large families. Am J Hum Genet 49:522–528PubMedGoogle Scholar
  6. 6.
    Hirano K, Klintworth GK, Zhan Q, Bennett K, Cintron C (1996) βig–h3 is synthesized by corneal epithelium and perhaps endothelium in Fuchs´dystrophic corneas. Curr Eye Res 15:965–972PubMedCrossRefGoogle Scholar
  7. 7.
    Holbach LM, Hinzpeter EN Naumann GOH (1997) Kornea und Sklera. In: Naumann GOH (ed) Pathologie des Auges. Springer, Berlin, Heidelberg, New York, pp 507–692Google Scholar
  8. 8.
    Kelly JW (1998) The environmental dependency of protein folding best explains prion and amyloid diseases. Proc Natl Acad Sci USA 95:930–932PubMedCrossRefGoogle Scholar
  9. 9.
    Kim J–E, Park R–W, Choi J–Y, Bae Y–C, Kim K–S, Joo C–K, Kim I–S (2002) Molecular properties of wild–type and mutant βIG–H3 proteins. Invest Ophthalmol Vis Sci 43:656–661PubMedGoogle Scholar
  10. 10.
    Klintworth GK (1999) Advances in the molecular genetics of corneal dystrophies. Am J Ophthalmol 128:747–754PubMedCrossRefGoogle Scholar
  11. 11.
    Klintworth GK (2003) The molecular genetics of the corneal dystrophies–current status. Front Biosci 8:D687–D713PubMedCrossRefGoogle Scholar
  12. 12.
    Konno T (2001) Multistep nucleus formation and a separate subunit contribution of the amyloidgenesis of heat-denatured monellin. Protein Sci 10:2093–2101PubMedCrossRefGoogle Scholar
  13. 13.
    Korvatska E, Munier FL, Djemai A, Wang MX, Frueh B, Chiou AG, Uffer S, Ballestrazzi E, Braunstein RE, Forster RK, Culbertson WW, Boman H, Zografos L, Schorderet DF (1998) Mutation hotspots in 5q31–linked, corneal dystrophies. Am J Hum Genet 62:320–324CrossRefPubMedGoogle Scholar
  14. 14.
    Korvatska E, Munier FL, Chaubert P, Wang MX, Mashima Y, Yamamda M, Uffer S, Zografos L, Schorderet DF (1999) On the role of kerato-epithelin in the pathogenesis of 5q31–linked corneal dystrophies. Invest Ophthalmol Vis Sci 40:2213–2219PubMedGoogle Scholar
  15. 15.
    Korvatska E, Henry H, Mashima Y, Yamada M, Bachmann C, Munier FL, Schorderet DF (2000) Amyloid and non-amyloid forms of 5q31–linked corneal dystrophy resulting from kerato-epithelin mutations at Arg–124 are associated with abnormal turnover of the protein. J Biol Chem 275:11465–11469PubMedCrossRefGoogle Scholar
  16. 16.
    LeBaron RG, Bezverkov KI, Zimber MP, Pavelec R, Skonier J, Puchio AF (1995) β–Ig–h3, a novel secretory protein inducible by transforming growth factor–β, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro. J Invest Dermatol 104:844–849CrossRefPubMedGoogle Scholar
  17. 17.
    Munier FL, Korvatska E, Djemai A, Le Paslier D, Zografos L, Pescia G, Schorderet DF (1997) Kerato-epithelin mutations in four 5q31–linked corneal dystrophies. Nature Genet 15:248–251CrossRefGoogle Scholar
  18. 18.
    Munier FL, Schorderet DF (2001) Chromosom 5q31 linked corneal dystrophies: outline for a new classification. Klin Monatsbl Augenheilkd 218:136–139CrossRefPubMedGoogle Scholar
  19. 19.
    Munier FL, Frueh BE, Othenin–Girard P, Uffer S, Cousin P, Wang MX, Héon E, Black GCM, Blasi MA, Balestrazzi E, Lorenz B, Escoto R, Barraquer R, Hoeltzenbein M, Gloor B, Fossarello M, Singh AD, Arsenijevic Y, Zografos L, Schorderet DF (2002) BIGH3 mutation spectrum in corneal dystrophies. Invest Ophthalmol Vis Sci 43:949–954PubMedGoogle Scholar
  20. 20.
    Picken MM (2001) The changing concepts of amyloid. Arch Pathol Lab Med 125:38–43PubMedGoogle Scholar
  21. 21.
    Ratnaswamy G, Koepf E, Bekele H, Yin H, Kelly JW (1999) The amyloidogenicity of gelsolin is controlled by proteolysis and pH. Chem Biol 6:293–304CrossRefPubMedGoogle Scholar
  22. 22.
    Rawe JM, Zhan, Q., Burrows, R, Bennett K, Cintron C (1997) Beta–ig molecular cloning and in situ hybridization in corneal tissues. Invest Ophthalmol Vis Sci. 38:893–900PubMedGoogle Scholar
  23. 23.
    Sipe JD, Cohen AS (2000) Review: history of the amyloid fibril. J Struct Biol 130:88–98CrossRefPubMedGoogle Scholar
  24. 24.
    Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF (1992) cDNA cloning and sequence analysis of beta ig–h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol 11:511–522PubMedGoogle Scholar
  25. 25.
    Skonier J, Bennett K, Rothwell V, Kosowski S, Plowman G, Wallace P, Edelhoff S, Disteche C, Neubauer M, Marquardt H, Rodgers J, Purchio AF (1994) βig–h3: a transforming growth factor beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol 13:571–584PubMedCrossRefGoogle Scholar
  26. 26.
    Steiner RD, Paunio T, Uemichi T, Evans JP, Benson MD (1995) Asp 187 Asn mutation of gelsolin in an American kindred with familial amyloidosis, Finnish type (FAP IV). Hum Genet 95:327–330CrossRefPubMedGoogle Scholar
  27. 27.
    Streeten B, Qi Y, Klintworth GK, Eagle RC, Strauss JA, Bennett K (1999) Immunolocalization of ßig–h3 protein in 5q31–linked corneal dystrophies and normal corneas. Arch Ophthalmol 117:67–75PubMedGoogle Scholar
  28. 28.
    Takacs L, Csutak A, Balazs E, Berta A (1998) Immunohistochemical detection of betaIG–H3 in scarring human corneas. Graefe's Arch Clin Exp Ophthalmol 237:529–34Google Scholar
  29. 29.
    Takacs L, Csutak A, Balazs E, Modis L, Berta A (1999) Expression of βig–h3 is lower than normal in keratoconus corneas but increases with scarring. Cornea 18:599–605CrossRefPubMedGoogle Scholar
  30. 30.
    Takeshita S, Kikuno R, Tezuka K (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fascilin I. Biochem J 15:271–278Google Scholar
  31. 31.
    Tsujikawa M, Kurahashi H, Tanaka T, Nishida K, Shimomura Y, Tano Y, Nakamura Y (1999) Identification of the gene responsible for gelatinous drop-like corneal dystrophy. Nat Genet 21:420–423CrossRefPubMedGoogle Scholar
  32. 32.
    Yamamoto S, Okada M, Tsujikawa M et al (1998) A kerato-epithelin mutation in lattice corneal dystrophy type IIIA. Am J Hum Genet 62:719–722CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao G, Wang G, Sun W, Zhang W, Li Y, Shen H, Liang T (2002) Expression of βig–h3 in keratoconus and normal cornea. Chin Med J 115:1401–1404PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • D. Suesskind
    • 1
    Email author
  • C. Auw‐Haedrich
    • 2
  • D. F. Schorderet
    • 3
  • F. L. Munier
    • 3
  • K. U. Loeffler
    • 4
  1. 1.Department of OphthalmologyUniversity of TuebingenTuebingenGermany
  2. 2.Department of OphthalmologyFreiburg UniversityFreiburgGermany
  3. 3.Division of Medical GeneticsCHUVLausanneSwitzerland
  4. 4.Department of OphthalmologyBonn UniversityBonnGermany

Personalised recommendations